ANNA UNIVERSITY, CHENNAI
AFFILIATED INSTITUTIONS
B.E. CIVIL ENGINEERING
REGULATIONS – 2017
CHOICE BASED CREDIT SYSTEM

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

I. To prepare students for successful careers in Civil Engineering field that meets the needs of Indian and multinational companies.

II. To develop the confidence and ability among students to synthesize data and technical concepts and thereby apply it in real world problems.

III. To develop students to use modern techniques, skill and mathematical engineering tools for solving problems in Civil Engineering.

IV. To provide students with a sound foundation in mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyse engineering problems and to prepare them for graduate studies.

V. To promote students to work collaboratively on multi-disciplinary projects and make them engage in life-long learning process throughout their professional life.

PROGRAMME OUTCOMES (POs):
On successful completion of the programme,

1. Graduates will demonstrate knowledge of mathematics, science and engineering.

2. Graduates will demonstrate an ability to identify, formulate and solve engineering problems.

3. Graduate will demonstrate an ability to design and conduct experiments, analyze and interpret data.

4. Graduates will demonstrate an ability to design a system, component or process as per needs and specifications.

5. Graduates will demonstrate an ability to visualize and work on laboratory and multidisciplinary tasks.

6. Graduate will demonstrate skills to use modern engineering tools, software and equipment to analyze problems.

7. Graduates will demonstrate knowledge of professional and ethical responsibilities.

8. Graduate will be able to communicate effectively in both verbal and written form.

9. Graduate will show the understanding of impact of engineering solutions on the society and also will be aware of contemporary issues.

10. Graduate will develop confidence for self education and ability for life-long learning.
PEOs & POs

The B.E. Civil Engineering Program outcomes leading to the achievement of the objectives are summarized in the following Table.

<table>
<thead>
<tr>
<th>Programme Educational Objectives</th>
<th>Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>I</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

X indicates the attainment of the educational objective through the program outcome.
<p>| YEAR 1 | SEM 1 | Communicative English | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 1 |  | Engineering Mathematics – I |  | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 1 |  | Engineering Physics | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 1 |  | Engineering Chemistry | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 1 |  | Problem Solving and Python Programming | ✓ | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 1 |  | Engineering Graphics | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 1 |  | Problem Solving and Python Programming Laboratory | ✓ | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 1 |  | Physics and Chemistry Laboratory | ✓ | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| | SEM 2 | Technical English |  | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| | SEM 2 | Engineering Mathematics – II |  | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| | SEM 2 | Physics for Civil Engineering | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| | SEM 2 | Basic Electrical and Electronics Engineering |  |  |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| | SEM 2 | Environmental Science and Engineering |  |  |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| | SEM 2 | Engineering Mechanics | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| | SEM 2 | Engineering Practices Laboratory | ✓ | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| |  | Computer Aided Building Drawing |  |  |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 2 | SEM 3 | Transforms and Partial Differential Equations |  |  |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 2 |  | Engineering Geology | ✓ | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 2 |  | Construction Materials | ✓ | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 2 |  | Strength of Materials I | ✓ | ✓ | ✓ | ✓ |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 2 |  | Fluid Mechanics | ✓ | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 2 |  | Surveying | ✓ | ✓ |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 2 |  | Surveying Laboratory |  |  |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
| YEAR 2 |  | Construction Materials Laboratory |  |  |  |  |  |  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |</p>
<table>
<thead>
<tr>
<th>SEM 4</th>
<th>Interpersonal Skills / Listening and Speaking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Numerical Methods</td>
</tr>
<tr>
<td></td>
<td>Construction Techniques and Practices</td>
</tr>
<tr>
<td></td>
<td>Strength of Materials II</td>
</tr>
<tr>
<td></td>
<td>Applied Hydraulic Engineering</td>
</tr>
<tr>
<td></td>
<td>Concrete Technology</td>
</tr>
<tr>
<td></td>
<td>Soil Mechanics</td>
</tr>
<tr>
<td></td>
<td>Strength of Materials Laboratory</td>
</tr>
<tr>
<td></td>
<td>Hydraulic Engineering Laboratory</td>
</tr>
<tr>
<td></td>
<td>Advanced Reading and Writing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM 5</td>
<td></td>
</tr>
<tr>
<td>Design of Reinforced Cement Concrete Elements</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Engineering</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Analysis I</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Supply Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Elective- I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Professional Elective I</td>
<td></td>
</tr>
<tr>
<td>Water and Waste Water Analysis Laboratory</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Mechanics Laboratory</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey Camp (2 weeks–During V Semester)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEM 6</th>
<th>Design of Steel Structural Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structural Analysis II</td>
</tr>
<tr>
<td></td>
<td>Irrigation Engineering</td>
</tr>
<tr>
<td></td>
<td>Wastewater Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>Highway Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective II</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Highway Engineering Laboratory</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigation and Environmental Engineering Drawing</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM 7</td>
<td>Estimation, Costing and Valuation Engineering</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Railways, Airports, Docks and Harbour Engineering</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural Design and Drawing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective III</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Elective II*</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creative and Innovative Project (Activity Based - Subject Related)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Training (4 weeks During VI semester–Summer)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Year 4 | | |
|--------| |
| SEM 8  | Professional Elective IV | ✓ | ✓ | | ✓ | | | | |
|        | Professional Elective V | ✓ | ✓ | | ✓ | | | | |
|        | Project Work | ✓ | ✓ | | ✓ | | | | |</p>
<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8151</td>
<td>Engineering Mathematics – I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>19</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

**SEMESTER II**

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA8251</td>
<td>Engineering Mathematics – II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH8201</td>
<td>Physics For Civil Engineering</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BE8251</td>
<td>Basic Electrical and Electronics</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8292</td>
<td>Engineering Mechanics</td>
<td>ES</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CE8211</td>
<td>Computer Aided Building Drawing</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>20</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

6
# SEMESTER III

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8353</td>
<td>Transforms and Partial Differential Equations</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CE8301</td>
<td>Strength of Materials I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8302</td>
<td>Fluid Mechanics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CE8351</td>
<td>Surveying</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CE8391</td>
<td>Construction Materials</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CE8392</td>
<td>Engineering Geology</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CE8311</td>
<td>Construction Materials Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CE8361</td>
<td>Surveying Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>HS8381</td>
<td>Interpersonal Skills / Listening and Speaking</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>29</td>
<td>19</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

# SEMESTER IV

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA8491</td>
<td>Numerical Methods</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CE8401</td>
<td>Construction Techniques and Practices</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8402</td>
<td>Strength of Materials II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CE8403</td>
<td>Applied Hydraulic Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CE8404</td>
<td>Concrete Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CE8491</td>
<td>Soil Mechanics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CE8481</td>
<td>Strength of Materials Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CE8461</td>
<td>Hydraulic Engineering Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>HS8461</td>
<td>Advanced Reading and Writing</td>
<td>EEC</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>29</td>
<td>19</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>S.No</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>CATEGORY</td>
<td>CONTACT PERIODS</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------------------------------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CE8501</td>
<td>Design of Reinforced Cement Concrete Elements</td>
<td>PC</td>
<td></td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CE8502</td>
<td>Structural Analysis I</td>
<td>PC</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>EN8491</td>
<td>Water Supply Engineering</td>
<td>PC</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CE8591</td>
<td>Foundation Engineering</td>
<td>PC</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective I</td>
<td>PE</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective I*</td>
<td>OE</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CE8511</td>
<td>Soil Mechanics Laboratory</td>
<td>PC</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>CE8512</td>
<td>Water and Waste Water Analysis Laboratory</td>
<td>PC</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>CE8513</td>
<td>Survey Camp (2 weeks –During IV Semester)</td>
<td>EEC</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>TOTAL</strong></td>
<td></td>
<td></td>
<td>28</td>
<td>18</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><strong>THEORY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CE8601</td>
<td>Design of Steel Structural Elements</td>
<td>PC</td>
<td></td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>CE8602</td>
<td>Structural Analysis II</td>
<td>PC</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>CE8603</td>
<td>Irrigation Engineering</td>
<td>PC</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CE8604</td>
<td>Highway Engineering</td>
<td>PC</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>EN8592</td>
<td>Wastewater Engineering</td>
<td>PC</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Professional Elective II</td>
<td>PE</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>PRACTICALS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CE8611</td>
<td>Highway Engineering Laboratory</td>
<td>PC</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>CE8612</td>
<td>Irrigation and Environmental Engineering Drawing</td>
<td>PC</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>TOTAL</strong></td>
<td></td>
<td></td>
<td>28</td>
<td>18</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
## SEMESTER VII

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CE8701</td>
<td>Estimation, Costing and Valuation Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CE8702</td>
<td>Railways, Airports, Docks and Harbour Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8703</td>
<td>Structural Design and Drawing</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective III</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Open Elective II*</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>CE8711</td>
<td>Creative and Innovative Project</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>CE8712</td>
<td>Industrial Training (4 weeks During VI Semester – Summer)</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>21</td>
<td>15</td>
<td>0</td>
<td>6</td>
<td>20</td>
</tr>
</tbody>
</table>

## SEMESTER VIII

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td>Professional Elective IV</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Professional Elective V</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CE8811</td>
<td>Project Work</td>
<td>EEC</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>26</td>
<td>6</td>
<td>0</td>
<td>20</td>
<td>16</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 182

*Course from the curriculum of other UG Programmes.
### HUMANITIES AND SOCIAL SCIENCES (HS)

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8151</td>
<td>Communicative English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>HS8251</td>
<td>Technical English</td>
<td>HS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8291</td>
<td>Environmental Science and Engineering</td>
<td>HS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

### BASIC SCIENCES (BS)

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA8151</td>
<td>Engineering Mathematics – I</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>PH8151</td>
<td>Engineering Physics</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CY8151</td>
<td>Engineering Chemistry</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BS8161</td>
<td>Physics and Chemistry Laboratory</td>
<td>BS</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>MA8251</td>
<td>Engineering Mathematics – II</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>PH8201</td>
<td>Physics for Civil Engineering</td>
<td>BS</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>MA8353</td>
<td>Transforms and Partial Differential Equations</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>MA8491</td>
<td>Numerical Methods</td>
<td>BS</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

### ENGINEERING SCIENCES (ES)

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GE8151</td>
<td>Problem Solving and Python Programming</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>GE8152</td>
<td>Engineering Graphics</td>
<td>ES</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>GE8161</td>
<td>Problem Solving and Python Programming Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>BE8251</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE8292</td>
<td>Engineering Mechanics</td>
<td>ES</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>GE8261</td>
<td>Engineering Practices Laboratory</td>
<td>ES</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>CE8392</td>
<td>Engineering Geology</td>
<td>ES</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

### PROFESSIONAL CORE (PC)

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CE8211</td>
<td>Computer Aided Building Drawing</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>CE8391</td>
<td>Construction Materials</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8301</td>
<td>Strength of Materials I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CE8302</td>
<td>Fluid Mechanics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CE8351</td>
<td>Surveying</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Type</td>
<td>Credits</td>
<td>Theory</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------------------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8481</td>
<td>Strength of Materials Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8361</td>
<td>Surveying Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8311</td>
<td>Construction Materials Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8401</td>
<td>Construction Techniques and Practices</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8402</td>
<td>Strength of Materials II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8403</td>
<td>Applied Hydraulic Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8404</td>
<td>Concrete Technology</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8491</td>
<td>Soil Mechanics</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8461</td>
<td>Hydraulic Engineering Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8501</td>
<td>Design of Reinforced Cement Concrete Elements</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8502</td>
<td>Structural Analysis I</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8511</td>
<td>Soil Mechanics Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8512</td>
<td>Water and Waste Water Analysis Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8591</td>
<td>Foundation Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8601</td>
<td>Design of Steel Structural Elements</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8602</td>
<td>Structural Analysis II</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8603</td>
<td>Irrigation Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8604</td>
<td>Highway Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8611</td>
<td>Highway Engineering Laboratory</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8612</td>
<td>Irrigation and Environmental Engineering Drawing</td>
<td>PC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN8592</td>
<td>Wastewater Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN8491</td>
<td>Water Supply Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8701</td>
<td>Estimation, Costing and Valuation Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8702</td>
<td>Railways, Airports, Docks and Harbour Engineering</td>
<td>PC</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE8703</td>
<td>Structural Design and Drawing</td>
<td>PC</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EMPLOYABILITY ENHANCEMENT COURSES (EEC)

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS8381</td>
<td>Interpersonal Skills / Listening and Speaking</td>
<td>EEC</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>HS8461</td>
<td>Advanced Reading and Writing</td>
<td>EEC</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>CE8513</td>
<td>Survey Camp (2 weeks – During IV Semester)</td>
<td>EEC</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>CE8711</td>
<td>Creative and Innovative Project (Activity Based - Subject Related)</td>
<td>EEC</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>CE8712</td>
<td>Industrial Training (4 weeks During VI Semester – Summer)</td>
<td>EEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>CE8811</td>
<td>Project Work</td>
<td>EEC</td>
<td></td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE

SEMESTER V

ELECTIVE - I

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GI8012</td>
<td>Digital Cadastre</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>GI8013</td>
<td>Advanced Surveying</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>GI8014</td>
<td>Geographic Information System</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>GI8015</td>
<td>Geoinformatics Applications for Civil Engineers</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GI8491</td>
<td>Total Station and GPS Surveying</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8071</td>
<td>Disaster Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>GE8074</td>
<td>Human Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VI

ELECTIVE - II

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CE8001</td>
<td>Ground Improvement Techniques</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CE8002</td>
<td>Introduction to Soil Dynamics and Machine Foundations</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8003</td>
<td>Rock Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CE8004</td>
<td>Urban Planning and Development</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CE8005</td>
<td>Air Pollution and Control Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8075</td>
<td>Intellectual Property Rights</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
### SEMESTER VII
#### ELECTIVE – III

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CE8006</td>
<td>Pavement Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CE8007</td>
<td>Traffic Engineering and Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8008</td>
<td>Transport and Environment</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CE8009</td>
<td>Industrial Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CE8010</td>
<td>Environmental and Social Impact Assessment</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CE8011</td>
<td>Design of Prestressed Concrete Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CE8012</td>
<td>Construction Planning and Scheduling</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>EN8591</td>
<td>Municipal Solid Waste Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>GE8077</td>
<td>Total Quality Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

### SEMESTER VIII
#### ELECTIVE – IV

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CE8013</td>
<td>Coastal Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CE8014</td>
<td>Participatory Water Resources Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8015</td>
<td>Integrated Water Resources Management</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CE8016</td>
<td>Groundwater Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CE8017</td>
<td>Water Resources Systems Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CE8018</td>
<td>Geo-Environmental Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>CE8091</td>
<td>Hydrology and Water Resources Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>GE8076</td>
<td>Professional Ethics in Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

### SEMESTER VIII
#### ELECTIVE – V

<table>
<thead>
<tr>
<th>S.No</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>CATEGORY</th>
<th>CONTACT PERIODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CE8019</td>
<td>Computer Aided Design of Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CE8020</td>
<td>Maintenance, Repair and Rehabilitation of Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CE8021</td>
<td>Structural Dynamics and Earthquake Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CE8022</td>
<td>Prefabricated Structures</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CE8023</td>
<td>Bridge Engineering</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE8073</td>
<td>Fundamentals of Nano Science</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>S.No</td>
<td>Subject Area</td>
<td>Credits per Semester</td>
<td>Credits Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
</tr>
<tr>
<td>1</td>
<td>HS</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BS</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ES</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PC</td>
<td>2</td>
<td>16</td>
<td>19</td>
<td>17</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PE</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OE</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EEC</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Non-Credit/Mandatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

182
OBJECTIVES:

- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills.

UNIT I  SHARING INFORMATION RELATED TO ONESELF/FAMILY& FRIENDS  12
Reading- short comprehension passages, practice in skimming-scanning and predicting-
Writing- completing sentences- developing hints. Listening- short texts- short formal and informal conversations. Speaking- introducing oneself - exchanging personal information-
Language development- Wh- Questions- asking and answering-yes or no questions- parts of speech. Vocabulary development-- prefixes- suffixes- articles.- count/ uncount nouns.

UNIT II  GENERAL READING AND FREE WRITING  12
Reading - comprehension-pre-reading-post reading- comprehension questions (multiple choice questions and /or short questions/ open-ended questions)-inductive reading- short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts)- register. Writing – paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures –Listening-telephonic conversations. Speaking – sharing information of a personal kind—greeting – taking leave- Language development – prepositions, conjunctions Vocabulary development-guessing meanings of words in context.

UNIT III  GRAMMAR AND LANGUAGE DEVELOPMENT  12
Reading- short texts and longer passages (close reading) Writing- understanding text structure- use of reference words and discourse markers-coherence-jumbled sentences
Listening – listening to longer texts and filling up the table- product description- narratives from different sources. Speaking- asking about routine actions and expressing opinions. Language development- degrees of comparison- pronouns- direct vs indirect questions- Vocabulary development – single word substitutes- adverbs.

UNIT IV  READING AND LANGUAGE DEVELOPMENT  12
Reading- comprehension-reading longer texts- reading different types of texts- magazines Writing- letter writing, informal or personal letters-e-mails-conventions of personal email-
Listening- listening to dialogues or conversations and completing exercises based on them. Speaking- speaking about oneself- speaking about one’s friend- Language development-
Tenses- simple present-simple past- present continuous and past continuous- Vocabulary development- synonyms-antonyms- phrasal verbs

UNIT V  EXTENDED WRITING  12
Reading- longer texts- close reading –Writing- brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing-Listening – listening to talks- conversations- Speaking – participating in conversations- short group conversations-Language development-modal verbs- present/ past perfect tense - Vocabulary development-collocations- fixed and semi-fixed expressions

OUTCOMES: At the end of the course, learners will be able to:

- Read articles of a general kind in magazines and newspapers.
- Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
- Comprehend conversations and short talks delivered in English.
- Write short essays of a general kind and personal letters and emails in English.
OBJECTIVES:

- The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modelling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS 12
Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.

UNIT II FUNCTIONS OF SEVERAL VARIABLES 12

UNIT III INTEGRAL CALCULUS 12
Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

UNIT IV MULTIPLE INTEGRALS 12

UNIT V DIFFERENTIAL EQUATIONS 12

TOTAL : 60 PERIODS

OUTCOMES:
After completing this course, students should demonstrate competency in the following skills:

- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
• Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
• Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
• Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
• Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
• Apply various techniques in solving differential equations.

TEXT BOOKS:
2. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III - Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

PH8151 ENGINEERING PHYSICS

OBJECTIVES:
• To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I PROPERTIES OF MATTER

UNIT II WAVES AND FIBER OPTICS

UNIT III THERMAL PHYSICS
UNIT IV  QUANTUM PHYSICS

UNIT V  CRYSTAL PHYSICS
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

OUTCOMES:
Upon completion of this course,
- the students will gain knowledge on the basics of properties of matter and its applications,
- the students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- the students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- the students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
- the students will understand the basics of crystals, their structures and different crystal growth techniques.

TEXT BOOKS:

REFERENCES:

CY8151  ENGINEERING CHEMISTRY  L T P C
3 0 0 3

OBJECTIVES:
- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
UNIT I \hspace{1cm} WATER AND ITS TREATMENT \hspace{1cm} 9

UNIT II \hspace{1cm} SURFACE CHEMISTRY AND CATALYSIS \hspace{1cm} 9

UNIT III \hspace{1cm} ALLOYS AND PHASE RULE \hspace{1cm} 9

UNIT IV \hspace{1cm} FUELS AND COMBUSTION \hspace{1cm} 9

UNIT V \hspace{1cm} ENERGY SOURCES AND STORAGE DEVICES \hspace{1cm} 9
Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – \( \text{H}_2-\text{O}_2 \) fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:
- The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures — lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING 9
Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS 9
Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS 9
Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES 9
Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES 9
Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

TOTAL : 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to
- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
- Structure simple Python programs for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python Programs.

TEXT BOOKS:

REFERENCES:

GE8152 ENGINEERING GRAPHICS

OBJECTIVES:
- To develop in students, graphic skills for communication of concepts, ideas and design of engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination) 1
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREEHAND SKETCHING 7+12
Basic Geometrical constructions, Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles – Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS 5+12
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 5+12
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.
UNIT V  ISOMETRIC AND PERSPECTIVE PROJECTIONS  6+12
Principles of isometric projection – isometric scale – Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

TOTAL: 90 PERIODS

OUTCOMES:
On successful completion of this course, the student will be able to

- familiarize with the fundamentals and standards of Engineering graphics
- perform freehand sketching of basic geometrical constructions and multiple views of objects.
- project orthographic projections of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- visualize and to project isometric and perspective sections of simple solids.

TEXT BOOK:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.
OBJECTIVES:
- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS
1. Compute the GCD of two numbers.
2. Find the square root of a number (Newton’s method)
3. Exponentiation (power of a number)
4. Find the maximum of a list of numbers
5. Linear search and Binary search
6. Selection sort, Insertion sort
7. Merge sort
8. First n prime numbers
9. Multiply matrices
10. Programs that take command line arguments (word count)
11. Find the most frequent words in a text read from a file
12. Simulate elliptical orbits in Pygame
13. Simulate bouncing ball using Pygame

PLATFORM NEEDED
Python 3 interpreter for Windows/Linux

TOTAL: 60 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to
- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
- Read and write data from/to files in Python.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)
1. Determination of rigidity modulus – Torsion pendulum
2. Determination of Young’s modulus by non-uniform bending method
3. (a) Determination of wavelength, and particle size using Laser
(b) Determination of acceptance angle in an optical fiber.
5. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer
6. Determination of wavelength of mercury spectrum – spectrometer grating
7. Determination of band gap of a semiconductor
8. Determination of thickness of a thin wire – Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:
Upon completion of the course, the students will be able to
- apply principles of elasticity, optics and thermal properties for engineering applications.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometry.

1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
2. Determination of total, temporary & permanent hardness of water by EDTA method.
3. Determination of DO content of water sample by Winkler’s method.
4. Determination of chloride content of water sample by argentometric method.
5. Estimation of copper content of the given solution by Iodometry.
6. Determination of strength of given hydrochloric acid using pH meter.
7. Determination of strength of acids in a mixture of acids using conductivity meter.
8. Estimation of iron content of the given solution using potentiometer.
9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
10. Estimation of sodium and potassium present in water using flame photometer.
12. Pseudo first order kinetics-ester hydrolysis.
14. Determination of CMC.
15. Phase change in a solid.
16. Conductometric titration of strong acid vs strong base.

TOTAL: 30 PERIODS

OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

TEXTBOOKS:

HS8251  TECHNICAL ENGLISH  L T P C
        4 0 0 4

OBJECTIVES:
The Course prepares second semester engineering and Technology students to:
- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.
UNIT I  INTRODUCTION TECHNICAL ENGLISH

UNIT II  READING AND STUDY SKILLS
Listening- Listening to longer technical talks and completing exercises based on them- Speaking – describing a process- Reading – reading longer technical texts- identifying the various transitions in a text- paragraphing- Writing- interpreting charts, graphs- Vocabulary Development - vocabulary used in formal letters/emails and reports Language Development- impersonal passive voice, numerical adjectives.

UNIT III  TECHNICAL WRITING AND GRAMMAR
Listening- Listening to classroom lectures/ talks on engineering/technology - Speaking – introduction to technical presentations- Reading – longer texts both general and technical, practice in speed reading; Writing- Describing a process, use of sequence words- Vocabulary Development- sequence words- Misspelled words. Language Development- embedded sentences.

UNIT IV  REPORT WRITING

UNIT V  GROUP DISCUSSION AND JOB APPLICATIONS
Listening- TED/Ink talks; Speaking – participating in a group discussion - Reading– reading and understanding technical articles Writing– Writing reports- minutes of a meeting- accident and survey- Vocabulary Development- verbal analogies Language Development- reported speech.

TOTAL :60 PERIODS

OUTCOMES:
At the end of the course learners will be able to:
- Read technical texts and write area- specific texts effortlessly.
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

REFERENCES:
2. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007

Students can be asked to read Tagore, Chetan Bhagat and for supplementary reading.
OBJECTIVES:
- This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES 12

UNIT II VECTOR CALCULUS 12
Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Area of a curved surface - Volume integral - Green’s, Gauss divergence and Stoke’s theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS 12
Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function - Conformal mapping – Mapping by functions \( w = z + c, c = \frac{1}{z}, z^2 \) - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION 12

UNIT V LAPLACE TRANSFORMS 12

OUTCOMES:
After successfully completing the course, the student will have a good understanding of the following topics and their applications:
- Eigenvalues and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green’s theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

TEXT BOOKS:
REFERENCES:

PH8201 PHYSICS FOR CIVIL ENGINEERING (for B.E. Civil Engineering) L T P C
3 0 0 3

OBJECTIVE:
• To introduce the principles of thermal, acoustics, optics and new materials for civil engineering applications.

UNIT I THERMAL PERFORMANCE OF BUILDINGS

UNIT II ACOUSTICS

UNIT III LIGHTING DESIGNS

UNIT IV NEW ENGINEERING MATERIALS
Composites - definition and classification - Fibre reinforced plastics (FRP) and fiber reinforced metals (FRM) - Metallic glasses - Shape memory alloys - Ceramics - Classification - Crystalline - Non Crystalline - Bonded ceramics, Manufacturing methods - Slip casting - Isostatic pressing - Gas pressure bonding - Properties - thermal, mechanical, electrical and chemical ceramic fibres - ferroelectric and ferromagnetic ceramics - High Aluminium ceramics.
UNIT V  HAZARDS
Seismology and Seismic waves - Earth quake ground motion - Basic concepts and estimation techniques - site effects - Probabilistic and deterministic Seismic hazard analysis - Cyclone and flood hazards - Fire hazards and fire protection, fire-proofing of materials, fire safety regulations and firefighting equipment - Prevention and safety measures.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of this course,
- the students will have knowledge on the thermal performance of buildings,
- the students will acquire knowledge on the acoustic properties of buildings,
- the students will get knowledge on various lighting designs for buildings,
- the students will gain knowledge on the properties and performance of engineering materials, and
- the students will understand the hazards of buildings.

TEXT BOOKS:

REFERENCES:

BE8251  BASIC ELECTRICAL AND ELECTRONICS ENGINEERING  L T P C
3 0 0 3

OBJECTIVES:
- To explain the basic theorems used in Electrical circuits and the different components and function of electrical machines.
- To explain the fundamentals of semiconductor and applications.
- To explain the principles of digital electronics
- To impart knowledge of communication.

UNIT I  ELECTRICAL CIRCUITS & MEASURMENTS

UNIT II  ELECTRICAL MACHINES
UNIT III SEMICONDUCTOR DEVICES AND APPLICATIONS  9

UNIT IV DIGITAL ELECTRONICS  9

UNIT V FUNDAMENTALS OF COMMUNICATION ENGINEERING  9

TOTAL: 45 PERIODS

OUTCOMES:
- ability to identify the electrical components and explain the characteristics of electrical machines.
- ability to identify electronics components and understand the characteristics

TEXT BOOKS:
2. S.K.Bhattacharya "Basic Electrical and Electronics Engineering", Pearson India, 2011

REFERENCES:

GE8291 ENVIRONMENTAL SCIENCE AND ENGINEERING  L T P C
3 0 0 3

OBJECTIVES:
- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.
UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY
Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION
Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

TOTAL: 45 PERIODS
OUTCOMES:
- Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXTBOOKS:

REFERENCES:

GE8292 ENGINEERING MECHANICS L T P C
3 2 0 4

OBJECTIVES:
- To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.

UNIT I STATICS OF PARTICLES 9+6

UNIT II EQUILIBRIUM OF RIGID BODIES 9+6
Free body diagram – Types of supports – Action and reaction forces – stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon’s theorem – Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions

UNIT III PROPERTIES OF SURFACES AND SOLIDS 9+6
UNIT IV  DYNAMICS OF PARTICLES  9+6

UNIT V  FRICTION AND RIGID BODY DYNAMICS  9+6
Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction –wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

TOTAL : (45+30)=75 PERIODS

OUTCOMES:
On successful completion of this course, the student will be able to
- illustrate the vectorial and scalar representation of forces and moments
- analyse the rigid body in equilibrium
- evaluate the properties of surfaces and solids
- calculate dynamic forces exerted in rigid body
- determine the friction and the effects by the laws of friction

TEXT BOOKS:

REFERENCES:

GE8261  ENGINEERING PRACTICES LABORATORY  L T P C  0 0 4 2

OBJECTIVES:
- To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I  CIVIL ENGINEERING PRACTICE  13
Buildings:
(a) Study of plumbing and carpentry components of residential and industrial buildings.
   Safety aspects.

Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:
   Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.
(e) Demonstration of plumbing requirements of high-rise buildings.

**Carpentry using Power Tools only:**
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
   Wood work, joints by sawing, planing and cutting.

**II MECHANICAL ENGINEERING PRACTICE**

Welding:
(a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.
(b) Gas welding practice

Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice

Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays and funnels.
(c) Different type of joints.

Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and V – fitting models.

**GROUP B (ELECTRICAL & ELECTRONICS)**

**III ELECTRICAL ENGINEERING PRACTICE**

1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

**IV ELECTRONICS ENGINEERING PRACTICE**

1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EX-OR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

**TOTAL: 60 PERIODS**

**OUTCOMES:**
On successful completion of this course, the student will be able to
- fabricate carpentry components and pipe connections including plumbing works.
- use welding equipments to join the structures.
- Carry out the basic machining operations
- Make the models using sheet metal works
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances
- Measure the electrical quantities
- Elaborate on the components, gates, soldering practices.

**LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:**

**CIVIL**
1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools:
   (a) Rotary Hammer 2 Nos
   (b) Demolition Hammer 2 Nos
   (c) Circular Saw 2 Nos
   (d) Planer 2 Nos
   (e) Hand Drilling Machine 2 Nos
   (f) Jigsaw 2 Nos

**MECHANICAL**
1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study purpose items: centrifugal pump, air-conditioner One each.

**ELECTRICAL**
1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos
   (b) Digital Live-wire detector 2 Nos

**ELECTRONICS**
1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply
CE8211  COMPUTER AIDED BUILDING DRAWING  L T P C  0 0 4 2

OBJECTIVES:
- To introduce the students to draft the plan, elevation and sectional views of buildings in accordance with development and control rules satisfying orientation and functional requirements as per National Building Code.

LIST OF EXPERIMENTS
1. Principles of planning, orientation and complete joinery details (Paneled and Glazed Doors and Windows)
2. Buildings with load bearing walls
3. Buildings with sloping roof
4. R.C.C. framed structures.
5. Industrial buildings – North light roof structures

TOTAL: 60 PERIODS

OUTCOMES:
- The students will be able to draft the plan, elevation and sectional views of the buildings, industrial structures, and framed buildings using computer softwares.

TEXTBOOKS:

REFERENCES:

MA8353  TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS  L T P C  4 0 0 4

OBJECTIVES:
- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.
UNIT I  PARTIAL DIFFERENTIAL EQUATIONS  12
Formation of partial differential equations – Singular integrals  -  Solutions of standard types of first
order partial differential equations -  Lagrange’s linear equation -  Linear partial differential
equations of second and higher order with constant coefficients of both homogeneous and non-
homogeneous types.

UNIT II  FOURIER SERIES  12
Dirichlet’s conditions – General Fourier series – Odd and even functions –  Half range sine series –
Half range cosine series –  Complex form of Fourier series – Parseval’s identity – Harmonic
analysis.

UNIT III  APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS  12
Classification of PDE – Method of separation of variables - Fourier Series Solutions of one
dimensional wave equation –  One dimensional equation of heat conduction – Steady state
solution of two dimensional equation of heat conduction.

UNIT IV  FOURIER TRANSFORMS  12
Statement of Fourier integral theorem – Fourier transform pair – Fourier sine and
cosine transforms – Properties – Transforms of simple functions – Convolution theorem –
Parseval’s identity.

UNIT V  Z - TRANSFORMS AND DIFFERENCE EQUATIONS  12
Z-transforms - Elementary properties – Inverse Z-transform (using partial fraction and residues) –
Initial and final value theorems -  Convolution theorem - Formation of difference equations –
Solution of difference equations using Z - transform.

TOTAL:  60 PERIODS

OUTCOMES :
Upon successful completion of the course, students should be able to:
• Understand how to solve the given standard partial differential equations.
• Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
• Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
• Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
• Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXT BOOKS:

REFERENCES :
OBJECTIVES:
- To learn the fundamental concepts of Stress, Strain and deformation of solids.
- To know the mechanism of load transfer in beams, the induced stress resultants and deformations.
- To understand the effect of torsion on shafts and springs.
- To analyze plane and space trusses

UNIT I  STRESS, STRAIN AND DEFORMATION OF SOLIDS  9

UNIT II  TRANSFER OF LOADS AND STRESSES IN BEAMS  9
Types of loads, supports, beams – concept of shearing force and bending moment - Relationship between intensity of load, Shear Force and Bending moment - Shear Force and Bending Moment Diagrams for Cantilever, simply supported and overhanging beams with concentrated load, uniformly distributed load, uniformly varying load and concentrated moment. Theory of Simple Bending – Stress Distribution due to bending moment and shearing force - Flitched Beams - Leaf Springs.

UNIT III  DEFLECTION OF BEAMS  9

UNIT IV  TORSION  9

UNIT V  ANALYSIS OF TRUSSES  9
Determinate and indeterminate trusses - Analysis of pin jointed plane determinate trusses by method of joints, method of sections and tension coefficient – Analysis of Space trusses by tension coefficient method.

TOTAL :45 PERIODS

OUTCOMES:
Students will be able to
- Understand the concepts of stress and strain, principal stresses and principal planes.
- Determine Shear force and bending moment in beams and understand concept of theory of simple bending.
- Calculate the deflection of beams by different methods and selection of method for determining slope or deflection.
- Apply basic equation of torsion in design of circular shafts and helical springs.
- Analyze the pin jointed plane and space trusses
TEXTBOOKS:

REFERENCES:

CE8302 FLUID MECHANICS  L T P C
3 0 0 3

OBJECTIVE:
- To understand the basic properties of the fluid, fluid kinematics, fluid dynamics and to analyze and appreciate the complexities involved in solving the fluid flow problems.

UNIT I FLUID PROPERTIES AND FLUID STATICS
9
Fluid – definition, distinction between solid and fluid - Units and dimensions - Properties of fluids - density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapour pressure, capillarity and surface tension - Fluid statics: concept of fluid static pressure, absolute and gauge pressures - pressure measurements by manometers-forces on planes – centre of pressure – buoyancy and floatation.

UNIT II FLUID KINEMATICS AND DYNAMICS
9
Fluid Kinematics – Classification and types of flow - velocity field and acceleration - continuity equation (one and three dimensional differential forms)- stream line-streak line-path line- stream function - velocity potential function - flow net. Fluid dynamics - equations of motion - Euler's equation along a streamline - Bernoulli's equation – applications - venturi meter, orifice meter and Pitot tube- linear momentum equation and its application to pipe bend.

UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES
9
Fundamental dimensions - dimensional homogeneity - Rayleigh’s method and Buckingham Pi theorem - dimensionless parameters - similitudes and model studies - distorted models.

UNIT IV FLOW THROUGH PIPES
9
Reynold's experiment - laminar flow through circular pipe (Hagen poiseulle's) - hydraulic and energy gradient – flow through pipes - Darcy - Weisbach's equation - pipe roughness - friction factor-Moody's diagram- major and minor losses of flow in pipes - pipes in series and in parallel.

UNIT V BOUNDARY LAYER
9
Boundary layer – definition- boundary layer on a flat plate – laminar and turbulent boundary layer-displacement, energy and momentum thickness – Momentum integral equation-Boundary layer separation and control – drag on flat plate.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course students will be able to

- Get a basic knowledge of fluids in static, kinematic and dynamic equilibrium.
- Understand and solve the problems related to equation of motion.
- Gain knowledge about dimensional and model analysis.
- Learn types of flow and losses of flow in pipes.
- Understand and solve the boundary layer problems.

TEXT BOOKS:

REFERENCES:

CE8351 SURVEYING

OBJECTIVES:
- To introduce the rudiments of plane surveying and geodetic principles to Civil Engineers.
- To learn the various methods of plane and geodetic surveying to solve the real world Civil Engineering problems.
- To introduce the concepts of Control Surveying
- To introduce the basics of Astronomical Surveying

UNIT I FUNDAMENTALS OF CONVENTIONAL SURVEYING AND LEVELLING

UNIT II THEODOLITE AND TACHEOMETRIC SURVEYING
Horizontal and vertical angle measurements - Temporary and permanent adjustments - Heights and distances - Tachometer - Stadia Constants - Analytic Lens - Tangential and Stadia Tacheometry surveying - Contour – Contouring – Characteristics of contours – Methods of contouring – Tacheometric contouring - Contour gradient – Uses of contour plan and map

UNIT III CONTROL SURVEYING AND ADJUSTMENT

UNIT IV  ADVANCED TOPICS IN SURVEYING
9

UNIT V  MODERN SURVEYING
9
Total Station : Advantages - Fundamental quantities measured - Parts and accessories - working principle - On board calculations - Field procedure - Errors and Good practices in using Total Station GPS Surveying : Different segments - space, control and user segments - satellite configuration - signal structure - Orbit determination and representation - Anti Spoofing and Selective Availability - Task of control segment - Hand Held and Geodetic receivers - data processing - Traversing and triangulation.

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course the student will be able to understand
- The use of various surveying instruments and mapping
- Measuring horizontal angle and vertical angle using different instruments
- Methods of leveling and setting levels with different instruments
- Concepts of astronomical surveying and methods to determine time, longitude, latitude and azimuth
- Concept and principle of modern surveying.

TEXTBOOKS:

REFERENCES:

CE8391  CONSTRUCTION MATERIALS  L T P C
3 0 0 3

OBJECTIVE:
- To introduce students to various materials commonly used in civil engineering construction and their properties.
UNIT I  STONES – BRICKS – CONCRETE BLOCKS  9

UNIT II  LIME – CEMENT – AGGREGATES – MORTAR  9

UNIT III  CONCRETE  9

UNIT IV  TIMBER AND OTHER MATERIALS  9

UNIT V  MODERN MATERIALS  9

TOTAL: 45 PERIODS

OUTCOMES:
On completion of this course the students will be able to
- Compare the properties of most common and advanced building materials.
- understand the typical and potential applications of lime, cement and aggregates
- know the production of concrete and also the method of placing and making of concrete elements.
- understand the applications of timbers and other materials
- Understand the importance of modern material for construction.

TEXT BOOKS:

REFERENCES:
OBJECTIVE:  
- At the end of this course the students will be able to understand the importance of geological knowledge such as earth, earthquake, volcanism and to apply this knowledge in projects such as dams, tunnels, bridges, roads, airport and harbor.

UNIT I  PHYSICAL GEOLOGY  

UNIT II  MINEROLOGY  

UNIT III  PETROLOGY  
Classification of rocks, distinction between Igneous, Sedimentary and Metamorphic rocks. Engineering properties of rocks. Description, occurrence, engineering properties, distribution and uses of Granite, Dolerite, Basalt, Sandstone, Limestone, Laterite, Shale, Quartzite, Marble, Slate, Gneiss and Schist.

UNIT IV  STRUCTURAL GEOLOGY AND GEOPHYSICAL METHODS  

UNIT V  APPLICATION OF GEOLOGICAL INVESTIGATIONS  
Remote sensing for civil engineering applications; Geological conditions necessary for design and construction of Dams, Reservoirs, Tunnels, and Road cuttings - Hydrogeological investigations and mining - Coastal protection structures. Investigation of Landslides, causes and mitigation.

TOTAL: 45 PERIODS

OUTCOMES:  
The students completing this course
- Will be able to understand the importance of geological knowledge such as earth, earthquake, volcanism and the action of various geological agencies.
- Will get basics knowledge on properties of minerals.
- Gain knowledge about types of rocks, their distribution and uses.
- Will understand the methods of study on geological structure.
- Will understand the application of geological investigation in projects such as dams, tunnels, bridges, roads, airport and harbor

TEXT BOOKS:  

REFERENCES:  
CE8311  CONSTRUCTION MATERIALS LABORATORY  L  T  P  C
0  0  4  2

OBJECTIVE:
- To facilitate the understanding of the behavior of construction materials.

I. TEST ON FINE AGGREGATES  15
1. Grading of fine aggregates
2. Test for specific gravity and test for bulk density
3. Compacted and loose bulk density of fine aggregate

II. TEST ON COARSE AGGREGATE  15
1. Determination of impact value of coarse aggregate
2. Determination of elongation index
3. Determination of flakiness index
4. Determination of aggregate crushing value of coarse aggregate

III. TEST ON CONCRETE  15
1. Test for Slump
2. Test for Compaction factor
3. Test for Compressive strength - Cube & Cylinder
4. Test for Flexural strength

IV. TEST ON BRICKS AND BLOCKS  15
1. Test for compressive strength of bricks and blocks
2. Test for Water absorption of bricks and blocks
3. Determination of Efflorescence of bricks
4. Test on tiles

TOTAL: 60 PERIODS

OUTCOME:
- The students will have the required knowledge in the area of testing of construction materials and components of construction elements experimentally.

REFERENCES:

CE8361  SURVEYING LABORATORY  L  T  P  C
0  0  4  2

OBJECTIVE:
- At the end of the course the student will possess knowledge about Survey field techniques

LIST OF EXPERIMENTS:
Chain Survey
1. Study of chains and its accessories, Aligning, Ranging, Chaining and Marking Perpendicular offset
2. Setting out works – Foundation marking using tapes single Room and Double Room
Compass Survey
3. Compass Traversing – Measuring Bearings & arriving included angles

Levelling - Study of levels and levelling staff
4. Fly levelling using Dumpy level & Tilting level
5. Check levelling

Theodolite - Study of Theodolite
6. Measurements of horizontal angles by reiteration and repetition and vertical angles
7. Determination of elevation of an object using single plane method when base is accessible/inaccessible.

Tacheometry – Tangential system – Stadia system
8. Determination of Tacheometric Constants
9. Heights and distances by stadia Tacheometry
10. Heights and distances by Tangential Tacheometry

Total Station - Study of Total Station, Measuring Horizontal and vertical angles
11. Traverse using Total station and Area of Traverse
12. Determination of distance and difference in elevation between two inaccessible points using Total station

TOTAL: 60 PERIODS

OUTCOME:
- Students completing this course would have acquired practical knowledge on handling basic survey instruments including Theodolite, Tacheometry, Total Station and GPS and have adequate knowledge to carryout Triangulation and Astronomical surveying including general field marking for various engineering projects and Location of site etc.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Total Station</td>
<td>3 Nos</td>
</tr>
<tr>
<td>2.</td>
<td>Theodolites</td>
<td>Atleast 1 for every 5 students</td>
</tr>
<tr>
<td>3.</td>
<td>Dumpy level / Filling level</td>
<td>Atleast 1 for every 5 students</td>
</tr>
<tr>
<td>4.</td>
<td>Pocket stereoscope</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>Ranging rods</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Levelling staff</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Cross staff</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Chains</td>
<td>1 for a set of 5 students</td>
</tr>
<tr>
<td>9.</td>
<td>Tapes</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Arrows</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Prismatic Compass</td>
<td>10 nos</td>
</tr>
<tr>
<td>12.</td>
<td>Surveyor Compass</td>
<td>2 nos</td>
</tr>
<tr>
<td>13.</td>
<td>Survey grade or Hand held GPS</td>
<td>3 nos</td>
</tr>
</tbody>
</table>
OBJECTIVES:
The Course will enable learners to:
- Equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills.
- Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities.
- Improve general and academic listening skills.
- Make effective presentations.

UNIT I
Listening as a key skill- its importance- speaking - give personal information - ask for personal information - express ability - enquire about ability - ask for clarification Improving pronunciation - pronunciation basics taking lecture notes - preparing to listen to a lecture - articulate a complete idea as opposed to producing fragmented utterances.

UNIT II
Listen to a process information- give information, as part of a simple explanation - conversation starters: small talk - stressing syllables and speaking clearly - intonation patterns - compare and contrast information and ideas from multiple sources- converse with reasonable accuracy over a wide range of everyday topics.

UNIT III
Lexical chunking for accuracy and fluency- factors influence fluency, deliver a five-minute informal talk - greet - respond to greetings - describe health and symptoms - invite and offer - accept - decline - take leave - listen for and follow the gist- listen for detail

UNIT IV
Being an active listener: giving verbal and non-verbal feedback - participating in a group discussion - summarizing academic readings and lectures conversational speech listening to and participating in conversations - persuade.

UNIT V
Formal and informal talk - listen to follow and respond to explanations, directions and instructions in academic and business contexts - strategies for presentations and interactive communication - group/pair presentations - negotiate disagreement in group work.

TOTAL : 30 PERIODS

OUTCOMES:
At the end of the course Learners will be able to:
- Listen and respond appropriately.
- Participate in group discussions.
- Make effective presentations.
- Participate confidently and appropriately in conversations both formal and informal.

TEXTBOOKS:

REFERENCES:
MA8491  NUMERICAL METHODS  

OBJECTIVES:
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals in real-life situations.
- To acquaint the student with understanding of numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.
- To understand the knowledge of various techniques and methods of solving various types of partial differential equations.

UNIT I  SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS  12

UNIT II  INTERPOLATION AND APPROXIMATION  12
Interpolation with unequal intervals - Lagrange's interpolation – Newton’s divided difference interpolation – Cubic Splines - Difference operators and relations - Interpolation with equal intervals - Newton’s forward and backward difference formulae.

UNIT III  NUMERICAL DIFFERENTIATION AND INTEGRATION  12

UNIT IV  INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS  12

UNIT V  BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS  12
Finite difference methods for solving second order two - point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace’s and Poisson’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank-Nicholson) methods – One dimensional wave equation by explicit method.

TOTAL : 60 PERIODS

OUTCOMES:
Upon successful completion of the course, students should be able to:
- Understand the basic concepts and techniques of solving algebraic and transcendental equations.

• Appreciate the numerical techniques of interpolation and error approximations in various intervals in real life situations.
• Apply the numerical techniques of differentiation and integration for engineering problems.
• Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
• Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXTBOOKS:

REFERENCES:

CE8401 CONSTRUCTION TECHNIQUES AND PRACTICES L T P C
3 0 0 3

OBJECTIVE:
• The main objective of this course is to make the student aware of the various construction techniques, practices and the equipment needed for different types of construction activities. At the end of this course the student shall have a reasonable knowledge about the various construction procedures for sub to super structure and also the equipment needed for construction of various types of structures from foundation to super structure.

UNIT I CONSTRUCTION TECHNIQUES 9

UNIT II CONSTRUCTION PRACTICES 9
UNIT III SUB STRUCTURE CONSTRUCTION
Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting - driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation.

UNIT IV SUPER STRUCTURE CONSTRUCTION
Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks.

UNIT V CONSTRUCTION EQUIPMENT
Selection of equipment for earth work - earth moving operations - types of earthwork equipment - tractors, motor graders, scrapers, front end waders, earth movers – Equipment for foundation and pile driving. Equipment for compaction, batching, mixing and concreting - Equipment for material handling and erection of structures – types of cranes - Equipment for dredging, trenching, tunneling,

TOTAL: 45 PERIODS

OUTCOMES:
On successful completion of this course, students will be able to:
- know the different construction techniques and structural systems
- Understand various techniques and practices on masonry construction, flooring, and roofing.
- Plan the requirements for substructure construction.
- Know the methods and techniques involved in the construction of various types of super structures
- Select, maintain and operate hand and power tools and equipment used in the building construction sites.

TEXTBOOKS :

REFERENCES:
OBJECTIVES:

- To know the method of finding slope and deflection of beams and trusses using energy theorems and to know the concept of analysing indeterminate beam
- To estimate the load carrying capacity of columns, stresses due to unsymmetrical bending and various theories for failure of material.

UNIT I ENERGY PRINCIPLES

Strain energy and strain energy density – strain energy due to axial load (gradual, sudden and impact loadings), shear, flexure and torsion – Castigliano’s theorems – Maxwell’s reciprocal theorem - Principle of virtual work – unit load method - Application of energy theorems for computing deflections in determinate beams, plane frames and plane trusses – lack of fit and temperature effects - Williot Mohr’s Diagram.

UNIT II INDETERMINATE BEAMS

Concept of Analysis - Propped cantilever and fixed beams - fixed end moments and reactions – sinking and rotation of supports - Theorem of three moments – analysis of continuous beams – shear force and bending moment diagrams.

UNIT III COLUMNS AND CYLINDERS

Euler’s column theory – critical load for prismatic columns with different end conditions – Effective length – limitations - Rankine-Gordon formula - Eccentrically loaded columns – middle third rule - core of a section – Thin cylindrical and spherical shells – stresses and change in dimensions - Thick cylinders – Compound cylinders – shrinking on stresses.

UNIT IV STATE OF STRESS IN THREE DIMENSIONS

Stress tensor at a point – Stress invariants - Determination of principal stresses and principal planes - Volumetric strain. Theories of failure: Maximum Principal stress theory – Maximum Principal strain theory – Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory – Application problems.

UNIT V ADVANCED TOPICS

Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - curved beams – Winkler Bach formula – stresses in hooks.

TOTAL: 45 PERIODS

OUTCOMES:

Students will be able to

- Determine the strain energy and compute the deflection of determinate beams, frames and trusses using energy principles.
- Analyze propped cantilever, fixed beams and continuous beams using theorem of three moment equation for external loadings and support settlements.
- find the load carrying capacity of columns and stresses induced in columns and cylinders
- Determine principal stresses and planes for an element in three dimensional state of stress and study various theories of failure
- Determine the stresses due to Unsymmetrical bending of beams, locate the shear center, and find the stresses in curved beams.

TEXTBOOKS:


REFERENCES:

CE8403 APPLIED HYDRAULIC ENGINEERING L T P C
3 0 0 3

OBJECTIVE:
- To introduce the students to various hydraulic engineering problems like open channel flows and hydraulic machines. At the completion of the course, the student should be able to relate the theory and practice of problems in hydraulic engineering.

UNIT I UNIFORM FLOW
Definition and differences between pipe flow and open channel flow - Types of Flow - Properties of open channel - Velocity distribution in open channel - Steady uniform flow: Chezy equation, Manning equation - Best hydraulic sections for uniform flow – Wide open channel - Specific energy and specific force – Critical flow.

UNIT II GRADUALLY VARIED FLOW

UNIT III RAPIDLY VARIED FLOW
Application of the momentum equation for RVF - Hydraulic jumps - Types - Energy dissipation – Celerity – Rapidly varied unsteady flows (positive and negative surges)

UNIT IV TURBINES
Impact of Jet on flat, curved plates, Stationary and Moving – Classification of Turbines – Pelton wheel – Francis turbine – Kaplan turbine - Specific speed – Characteristic Curves of Turbines-Draft tube and cavitation.

UNIT V PUMPS
Classification of Pumps - Centrifugal pumps – Work done - Minimum speed to start the pump - NPSH - Multistage pumps – Characteristics curve - Reciprocating pumps - Negative slip - Indicator diagrams and its variations – Air vessels - Savings in work done.

TOTAL : 45 PERIODS

OUTCOMES:
On completion of this course the students will be able to
- Apply their knowledge of fluid mechanics in addressing problems in open channels.
- Able to identify a effective section for flow in different cross sections.
- To solve problems in uniform, gradually and rapidly varied flows in steady state conditions.
- Understand the principles, working and application of turbines.
- Understand the principles, working and application of pumps.
TEXTBOOKS:

REFERENCES:

CE8404 CONCRETE TECHNOLOGY L T P C

OBJECTIVE:
- To impart knowledge to the students on the properties of materials for concrete by suitable tests, mix design for concrete and special concretes.

UNIT I CONSTITUENT MATERIALS 9

UNIT II CHEMICAL AND MINERAL ADMIXTURES 9

UNIT III PROPORTIONING OF CONCRETE MIX 9
Principles of Mix Proportioning - Properties of concrete related to Mix Design - Physical properties of materials required for Mix Design - Design Mix and Nominal Mix - BIS Method of Mix Design - Mix Design Examples

UNIT IV FRESH AND HARDENED PROPERTIES OF CONCRETE 9

UNIT V SPECIAL CONCRETES 9

TOTAL: 45 PERIODS
OUTCOMES:
Students will be able to understand
- The various requirements of cement, aggregates and water for making concrete
- The effect of admixtures on properties of concrete
- The concept and procedure of mix design as per IS method
- The properties of concrete at fresh and hardened state
- The importance and application of special concretes.

TEXTBOOKS:

REFERENCES:

CE8491 SOIL MECHANICS L T P C 3 0 0 3

OBJECTIVE:
To impart knowledge to classify the soil based on index properties and to assess their engineering properties based on the classification. To familiarize the students about the fundamental concepts of compaction, flow through soil, stress transformation, stress distribution, consolidation and shear strength of soils. To impart knowledge of design of both finite and infinite slopes.

UNIT I SOIL CLASSIFICATION AND COMPACTION 9

UNIT II EFFECTIVE STRESS AND PERMEABILITY 9
Soil - water – Static pressure in water - Effective stress concepts in soils – Capillary phenomena – Permeability – Darcy’s law – Determination of Permeability – Laboratory Determination (Constant head and falling head methods) and field measurement pumping out in unconfined and confined aquifer – Factors influencing permeability of soils – Seepage - Two dimensional flow – Laplace's equation – Introduction to flow nets – Simple problems Sheet pile and wier.

UNIT III STRESS DISTRIBUTION AND SETTLEMENT 9
UNIT IV  SHEAR STRENGTH  9
Shear strength of cohesive and cohesion less soils – Mohr-Coulomb failure theory – shear strength - Direct shear, Triaxial compression, UCC and Vane shear tests – Pore pressure parameters – Factors influences shear strength of soil.

UNIT V  SLOPE STABILITY  9
Infinite slopes and finite slopes — Friction circle method – Use of stability number – Guidelines for location of critical slope surface in cohesive and c - φ soil – Slope protection measures.

TOTAL: 45 PERIODS

OUTCOMES:
Students will be able to
- classify the soil and assess the engineering properties, based on index properties.
- Understand the stress concepts in soils
- Understand and identify the settlement in soils.
- Determine the shear strength of soil
- Analyze both finite and infinite slopes.

TEXTBOOKS:

REFERENCES:

CE8481  STRENGTH OF MATERIALS LABORATORY  L T P C
0 0 4 2

OBJECTIVE:
- To expose the students to the testing of different materials under the action of various forces and determination of their characteristics experimentally.

LIST OF EXPERIMENTS
1. Tension test on steel rod
2. Compression test on wood
3. Double shear test on metal

53
4. Torsion test on mild steel rod
5. Impact test on metal specimen (Izod and Charpy)
6. Hardness test on metals (Rockwell and Brinell Hardness Tests)
7. Deflection test on metal beam
8. Compression test on helical spring
9. Deflection test on carriage spring

TOTAL: 60 PERIODS

OUTCOME:
- The students will have the required knowledge in the area of testing of materials and components of structural elements experimentally.

REFERENCES:

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>UTM of minimum 400 kN capacity</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Torsion testing machine</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Izod impact testing machine</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Hardness testing machine</td>
<td>1 each</td>
</tr>
<tr>
<td></td>
<td>Rockwell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vicker’s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brinell</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Beam deflection test apparatus</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Extensometer</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Compressometer</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Dial gauges</td>
<td>Few</td>
</tr>
<tr>
<td>9.</td>
<td>Le Chatelier’s apparatus</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>Vicat’s apparatus</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>Mortar cube moulds</td>
<td>10</td>
</tr>
</tbody>
</table>

CE8461 HYDRAULIC ENGINEERING LABORATORY

OBJECTIVE:
- Students should be able to verify the principles studied in theory by performing the experiments in lab.

LIST OF EXPERIMENTS

A. Flow Measurement
1. Calibration of Rotameter
2. Calibration of Venturimeter / Orificemeter
3. Bernoulli's Experiment

B. Losses in Pipes
4. Determination of friction factor in pipes
5. Determination of min or losses
C. Pumps
6. Characteristics of Centrifugal pumps
7. Characteristics of Gear pump
8. Characteristics of Submersible pump
9. Characteristics of Reciprocating pump

D. Turbines
10. Characteristics of Pelton wheel turbine
11. Characteristics of Francis turbine/Kaplan turbine

E. Determination of Metacentric height
12. Determination of Metacentric height of floating bodies

TOTAL: 60 PERIODS

OUTCOMES:
- The students will be able to measure flow in pipes and determine frictional losses.
- The students will be able to develop characteristics of pumps and turbines.

REFERENCES:

LIST OF EQUIPMENTS
1. One set up of Rotometer
2. One set up of Venturimeter/Orifice meter
3. One Bernoulli’s Experiment set up
4. One set up of Centrifugal Pump
5. One set up of Gear Pump
6. One set up of Submersible pump
7. One set up of Reciprocating Pump
8. One set up of Pelton Wheel turbine
9. One set up of Francis turbines/one set of kaplon turbine
10. One set up of equipment for determination of Metacentric height of floating bodies
11. One set up for determination of friction factor in pipes
12. One set up for determination of minor losses.

HS8461 ADVANCED READING AND WRITING

OBJECTIVES:
- Strengthen the reading skills of students of engineering.
- Enhance their writing skills with specific reference to technical writing.
- Develop students’ critical thinking skills.
- Provide more opportunities to develop their project and proposal writing skills.

UNIT I
Reading - Strategies for effective reading-Use glosses and footnotes to aid reading comprehension- Read and recognize different text types-Predicting content using photos and title
Writing-Plan before writing- Develop a paragraph: topic sentence, supporting sentences, concluding sentence –Write a descriptive paragraph
UNIT II
Reading-Read for details-Use of graphic organizers to review and aid comprehension Writing- State reasons and examples to support ideas in writing- Write a paragraph with reasons and examples- Write an opinion paragraph

UNIT III
Reading- Understanding pronoun reference and use of connectors in a passage- speed reading techniques-Writing- Elements of a good essay-Types of essays- descriptive-narrative- issue-based-argumentative-analytical.

UNIT IV
Reading- Genre and Organization of Ideas- Writing- Email writing- visumes – Job application-project writing-writing convincing proposals.

UNIT V
Reading- Critical reading and thinking- understanding how the text positions the reader- identify Writing- Statement of Purpose- letter of recommendation- Vision statement

TOTAL: 30 PERIODS

OUTCOMES:
At the end of the course Learners will be able to:
• Write different types of essays.
• Write winning job applications.
• Read and evaluate texts critically.
• Display critical thinking in various professional contexts.

TEXT BOOKS:

REFERENCES

CE8501 DESIGN OF REINFORCED CEMENT CONCRETE ELEMENTS

OBJECTIVES:
• To introduce the different types of philosophies related to design of basic structural elements such as slab, beam, column and footing which form part of any structural system with reference to Indian standard code of practice.
UNIT I INTRODUCTION

UNIT II DESIGN OF BEAMS
Analysis and design of Flanged beams for—Use of design aids for Flexure—Behaviour of RC members in Shear, Bond and Anchorage—Design requirements as per current code—Behaviour of rectangular RC beams in shear and torsion—Design of RC members for combined Bending, Shear and Torsion.

UNIT III DESIGN OF SLABS AND STAIRCASE
Analysis and design of cantilever, one way simply supported and continuous slabs and supporting beams—Two way slab—Design of simply supported and continuous slabs using IS code coefficients—Types of Staircases—Design of dog-legged Staircase.

UNIT IV DESIGN OF COLUMNS
Types of columns—Axially Loaded columns—Design of short Rectangular Square and circular columns—Design of Slender columns—Design for Uniaxial and Biaxial bending using Column Curves

UNIT V DESIGN OF FOOTINGS
Concepts of Proportioning footings and foundations based on soil properties—Design of wall footing—Design of axially and eccentrically loaded Square, Rectangular pad and sloped footings—Design of Combined Rectangular footing for two columns only.

TOTAL: 75 PERIODS

OUTCOMES:
Students will be able to

- Understand the various design methodologies for the design of RC elements.
- Know the analysis and design of flanged beams by limit state method and sign of beams for shear, bond and torsion.
- Design the various types of slabs and staircase by limit state method.
- Design columns for axial, uniaxial and biaxial eccentric loadings.
- Design of footing by limit state method.

TEXT BOOKS:

57
REFERENCES:
7. SP16, IS456:1978 “Design Aids for Reinforced Concrete to Bureau of Indian Standards, New Delhi, 1999

CE8502 STRUCTURAL ANALYSIS I

OBJECTIVE:
- To introduce the students to basic theory and concepts of classical methods of structural analysis

UNIT I STRAIN ENERGY METHOD
Determination of Static and Kinematic Indeterminacies – Analysis of continuous beams, plane frames and indeterminate plane trusses by strain energy method (up to two degree of redundancy).

UNIT II SLOPE DEFLECTION METHOD
Slope deflection equations – Equilibrium conditions - Analysis of continuous beams and rigid frames – Rigid frames with inclined members - Support settlements- symmetric frames with symmetric and skew-symmetric loadings.

UNIT IIII MOMENT DISTRIBUTION METHOD
Stiffness and carry over factors – Distribution and carryover of moments - Analysis of continuous Beams- Plane rigid frames with and without sway – Support settlement - symmetric frames with symmetric and skew-symmetric loadings.

UNIT IV FLEXIBILITY METHOD
Primary structures - Compatibility conditions – Formation flexibility matrices - Analysis of indeterminate pin- jointed plane frames, continuous beams and rigid jointed plane frames by direct flexibility approach.

UNIT V STIFFNESS METHOD
Restrained structure –Formation of stiffness matrices - equilibrium condition - Analysis of Continuous Beams, Pin-jointed plane frames and rigid frames by direct stiffness method.

TOTAL: 45 PERIODS
OUTCOMES:
Students will be able to
- Analyze continuous beams, pin-jointed indeterminate plane frames and rigid plane frames by strain energy method
- Analyse the continuous beams and rigid frames by slope deflection method.
- Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without sway.
- Analyse the indeterminate pin jointed plane frames continuous beams and rigid frames using matrix flexibility method.
- Understand the concept of matrix stiffness method and analysis of continuous beams, pin jointed trusses and rigid plane frames.

TEXTBOOKS:

REFERENCES:
2. William Weaver, Jrand James M.Gere, Matrix analysis of framed structures, CBS Publishers & Distributors, Delhi, 1995
UNIT III WATER TREATMENT
Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation – Clariflocculator-Plate and tube settlers - Pulsator clarifier - sand filters - Disinfection - Residue Management – Construction, Operation and Maintenance aspects.

UNIT IV ADVANCED WATER TREATMENT

UNIT V WATER DISTRIBUTION AND SUPPLY

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- an insight into the structure of drinking water supply systems, including water transport, treatment and distribution
- the knowledge in various unit operations and processes in water treatment
- an ability to design the various functional units in water treatment
- an understanding of water quality criteria and standards, and their relation to public health
- the ability to design and evaluate water supply project alternatives on basis of chosen criteria.

TEXTBOOKS:

REFERENCES:

CE8591 FOUNDATION ENGINEERING L T P C 3 0 0 3

OBJECTIVE:
- To impart knowledge to plan and execute a detail site investigation programme, to select geotechnical design parameters and type of foundations. Also to familiarize the students for the geotechnical design of different type of foundations and retaining walls.
UNIT I  SITE INVESTIGATION AND SELECTION OF FOUNDATION

UNIT II  SHALLOW FOUNDATION
Location and depth of foundation – Codal provisions – Bearing capacity of shallow foundation on homogeneous deposits – Terzaghi’s formula and BIS formula – Factors affecting bearing capacity – Bearing capacity from in-situ tests (SPT, SCPT and plate load) – Allowable bearing pressure – Seismic considerations in bearing capacity evaluation. Determination of Settlement of foundations on granular and clay deposits – Total and differential settlement – Allowable settlements – Codal provision – Methods of minimizing total and differential settlements.

UNIT III  FOOTINGS AND RAFTS
Types of Isolated footing, Combined footing, Mat foundation – Contact pressure and settlement distribution – Proportioning of foundations for conventional rigid behaviour – Minimum thickness for rigid behaviour – Applications – Compensated foundation – Codal provision

UNIT IV  PILE FOUNDATION
Types of piles and their functions – Factors influencing the selection of pile – Carrying capacity of single pile in granular and cohesive soil – Static formula – Dynamic formulae (Engineering news and Hileys) – Capacity from insitu tests (SPT and SCPT) – Negative skin friction – Uplift capacity - Group capacity by different methods (Feld’s rule, Converse – Labarra formula and block failure criterion) – Settlement of pile groups – Interpretation of pile load test (routine test only), Under reamed piles – Capacity under compression and uplift – Cohesive – expansive – non expansive – Cohesionless soils – Codal provisions.

UNIT V  RETAINING WALLS

OUTCOMES:
Students will be able to
- Understand the site investigation, methods and sampling.
- Get knowledge on bearing capacity and testing methods.
- Design shallow footings.
- Determine the load carrying capacity, settlement of pile foundation.
- Determine the earth pressure on retaining walls and analysis for stability.

TEXTBOOKS:
OBJECTIVE:

- To develop skills to test the soils for their index and engineering properties and to characterise the soil based on their properties.

EXERCISES:

1. DETERMINATION OF INDEX PROPERTIES 20
   a. Specific gravity of soil solids
   b. Grain size distribution – Sieve analysis
   c. Grain size distribution - Hydrometer analysis
   d. Liquid limit and Plastic limit tests
   e. Shrinkage limit and Differential free swell tests
2. DETERMINATION OF IN-SITU DENSITY AND COMPACtion CHARACTERISTICS
   a. Field density Test (Sand replacement method and core cutter method)
   c. Determination of relative density (Demonstration only)

3. DETERMINATION OF ENGINEERING PROPERTIES
   a. Permeability determination (constant head and falling head methods)
   b. One dimensional consolidation test (Determination of Co-efficient of consolidation only)
   c. Direct shear test in cohesionless soil
   d. Unconfined compression test in cohesive soil
   e. Laboratory vane shear test in cohesive soil
   f. Tri-axial compression test in cohesionless soil (Demonstration only)
   g. California Bearing Ratio Test

TOTAL: 60 PERIODS

OUTCOME:
- Students are able to conduct tests to determine both the index and engineering properties of soils and to characterize the soil based on their properties.

REFERENCES:
4. IS Code of Practice (2720) Relevant Parts, as amended from time to time, Bureau of Indian Standards, New Delhi.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sieves</td>
<td>2 sets</td>
</tr>
<tr>
<td>2.</td>
<td>Hydrometer</td>
<td>2 sets</td>
</tr>
<tr>
<td>3.</td>
<td>Liquid and Plastic limit apparatus</td>
<td>2 sets</td>
</tr>
<tr>
<td>4.</td>
<td>Shrinkage limit apparatus</td>
<td>3 sets</td>
</tr>
<tr>
<td>5.</td>
<td>Proctor Compaction apparatus</td>
<td>2 sets</td>
</tr>
<tr>
<td>6.</td>
<td>UTM of minimum of 20kN capacity</td>
<td>1</td>
</tr>
<tr>
<td>7.</td>
<td>Direct Shear apparatus</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Thermometer</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>Sand replacement method accessories and core cutter method accessories</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>Tri-axial Shear apparatus</td>
<td>1</td>
</tr>
<tr>
<td>11.</td>
<td>Three Gang Consolidation test device</td>
<td>1</td>
</tr>
<tr>
<td>12.</td>
<td>Relative Density apparatus</td>
<td>1</td>
</tr>
<tr>
<td>13.</td>
<td>Van Shear apparatus</td>
<td>1</td>
</tr>
<tr>
<td>14.</td>
<td>Weighing machine – 20kg capacity</td>
<td>1 No</td>
</tr>
<tr>
<td>15.</td>
<td>Weighing machine – 1kg capacity</td>
<td>3 No</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To analyse the physical, chemical and biological characteristics of water and wastewater
- To quantify the dosage requirement for coagulation process
- To study the growth of micro-organism and its quantification
- To quantify the sludge

Course Content:
1. Physical, Chemical and biological characteristics of water and wastewater
2. Jar test
3. Chlorine demand and residual test
4. Growth of micro-organism

COURSE OUTCOME:
On the completion of the course, the students will be able to:
- Quantify the pollutant concentration in water and wastewater
- Suggest the type of treatment required and amount of dosage required for the treatment
- Examine the conditions for the growth of micro-organisms

TOTAL: 60 PERIODS

List of Experiments:
1. Determination of pH, Turbidity and conductivity
2. Determination of Hardness
3. Determination of Alkalinity and Acidity
4. Determination of Chlorides
5. Determination of Phosphates and Sulphates
6. Determination of iron and fluoride
7. Determination of Optimum Coagulant dosage
8. Determination of residual chlorine and available chlorine in bleaching powder
9. Determination of Oil, and Grease
10. Determination of suspended, settleable, volatile and fixed solids
11. Determination Dissolved Oxygen and BOD for the given sample
12. Determination of COD for given sample
13. Determination of SVI of Biological sludge and microscopic examination
14. Determination of MPN index of given water sample

CE8513 SURVEY CAMP
(During IV semester Summer Vacation 2 weeks)

The objective of the survey camp is to enable the students to get practical training in the field work. Groups of not more than six members in a group will carry out each exercise in survey camp. The camp must involve work on a large area of not less than 40 acres outside the campus (Survey camp should not be conducted inside the campus). At the end of the camp, each student shall have mapped and contoured the area. The camp record shall include all original field observations, calculations and plots.

Two weeks Survey Camp will be conducted during summer vacation in the following activities:
1. Traverse - using Total station
2. Contouring
   (i). Radial tachometric contouring - Radial Line at Every 45 Degree and Length not less than 60 Meter on each Radial Line

64
(ii). Block Level/ By squares of size at least 100 Meter x 100 Meter at least 20 Meter interval
(III). L.S & C.S - Road and canal alignment for a Length of not less than 1 Kilo Meter
at least L.S at Every 30M and C.S at every 90 M

3. Offset of Buildings and Plotting the Location
4. Sun observation to determine azimuth (guidelines to be given to the students)
5. Use of GPS to determine latitude and longitude and locate the survey camp location
6. Traversing using GPS
7. Curve setting by deflection angle

Apart from above students may be given survey exercises in other area also based on site
condition to give good exposure on survey.

CE8601    DESIGN OF STEEL STRUCTURAL ELEMENTS          L T P C

OBJECTIVE:
- To introduce the students to limit state design of structural steel members subjected to
  compressive, tensile and bending loads, including connections. Design of structural
  systems such as roof trusses, gantry girders as per provisions of current code (IS 800 -
  2007) of practice for working stress and Limit state Method.

UNIT I    INTRODUCTION AND ALLOWABLE STRESS DESIGN  9+6

Structural steel types – Mechanical Properties of structural steel- Indian structural steel products-
Steps involved in the Deign Process -Steel Structural systems and their Elements- -Type of Loads
on Structures and Load combinations- Code of practices, Loading standards and Specifications -
Concept of Allowable Stress Method, and Limit State Design Methods for Steel structures-Relative
advantages and Limitations-Strengths and Serviceability Limit states.

Allowable stresses as per IS 800 section 11 -Concepts of Allowable stress design for bending and
Shear –Check for Elastic deflection-Calculation of moment carrying capacity –Design of Laterally
supported Solid Hot Rolled section beams-Allowable stress deign of Angle Tension and
Compression Members and estimation of axial load carrying capacity.

UNIT II  CONNECTIONS IN STEEL STRUCTURES  9+6

Type of Fasteners- Bolts Pins and welds- Types of simple bolted and welded connections Relative
advantages and Limitations-Modes of failure-the concept of Shear lag-efficiency of joints- Axially
loaded bolted connections for Plates and Angle Members using bearing type bolts –Prying forces
and Hanger connection– Design of Slip critical connections with High strength Friction Grip bolts.-
Design of joints for combined shear and Tension- Eccentrically Loaded Bolted Bracket
Connections- Welds-symbols and specifications- Effective area of welds-Fillet and but Welded
connections-Axially Loaded connections for Plate and angle truss members and Eccentrically
Loaded bracket connections.

UNIT III  TENSION MEMBERS  9+6

Tension Members - Types of Tension members and sections –Behaviour of Tension Members-
modes of failure- Slenderness ratio- Net area – Net effective sections for Plates ,Angles and Tee in
tension –Concepts of Shear Lag- Design of plate and angle tension members-design of built up
tension Members-Connections in tension members – Use of lug angles – Design of tension splice.

UNIT IV  COMPRESSION MEMBERS  9+6

Types of compression members and sections–Behaviour and types of failures-Short and slender
columns- Current code provisions for compression members- Effective Length, Slenderness ratio
–Column formula and column curves- Design of single section and compound Angles-Axially
Loaded solid section Columns- Design of Built up Laced and Battened type columns – Design of
column bases – Plate and Gusseted bases for Axially loaded columns- Splices for columns.
UNIT V
DESIGN OF FLEXURAL MEMBERS


TOTAL: 75 PERIODS

OUTCOMES:
Students will be able to

- Understand the concepts of various design philosophies
- Design common bolted and welded connections for steel structures
- Design tension members and understand the effect of shear lag.
- Understand the design concept of axially loaded columns and column base connections.
- Understand specific problems related to the design of laterally restrained and unrestrained steel beams.

TEXTBOOKS:

REFERENCES:
7. SP 6(1) Hand book on structural Steel Sections

CE8602
STRUCTURAL ANALYSIS II

OBJECTIVES :

- To learn the method of drawing influence lines and its uses in various applications like beams and plane trusses.
- To analyse the arches, suspension bridges and space trusses.
- Also to learn Plastic analysis of beams and rigid frames.
UNITI INFLUENCE LINES FOR DETERMINATE BEAMS
Influence lines for reactions in statically determinate beams – Influence lines for shear force and bending moment – Calculation of critical stress resultants due to concentrated and distributed moving loads – absolute maximum bending moment - influence lines for member forces in pin jointed plane frames.

UNITII INFLUENCE LINES FOR INDETERMINATE BEAMS
Muller Breslau’s principle– Influence line for Shearing force, Bending Moment and support reaction components of propped cantilever, continuous beams (Redundancy restricted to one), and fixed beams.

UNIT III ARCHES
Arches - Types of arches – Analysis of three hinged, two hinged and fixed arches - Parabolic and circular arches – Settlement and temperature effects.

UNIT IV CABLES AND SUSPENSION BRIDGES
Equilibrium of cable – length of cable - anchorage of suspension cables – stiffening girders - cables with three hinged stiffening girders – Influence lines for three hinged stiffening girders.

UNIT V PLASTIC ANALYSIS

OUTCOMES:
Students will be able to
- Draw influence lines for statically determinate structures and calculate critical stress resultants.
- Understand Muller Breslau principle and draw the influence lines for statically indeterminate beams.
- Analyse of three hinged, two hinged and fixed arches.
- Analyse the suspension bridges with stiffening girders
- Understand the concept of Plastic analysis and the method of analyzing beams and rigid frames.

TEXTBOOKS:

REFERENCES:
OBJECTIVE:
- The student is exposed to different phases in irrigation practices and Planning and management of irrigation. Further they will be imparted required knowledge on Irrigation storage and distribution canal system and Irrigation management.

UNIT I CROP WATER REQUIREMENT
Need and classification of irrigation- historical development and merits and demerits of irrigation-types of crops-crop season-duty, delta and base period- consumptive use of crops- estimation of Evapotranspiration using experimental and theoretical methods

UNIT II IRRIGATION METHODS

UNIT III DIVERSION AND IMPOUNDING STRUCTURES
Types of Impounding structures - Gravity dam – Forces on a dam -Design of Gravity dams; Earth dams, Arch dams- Diversion Head works - Weirs and Barrages-

UNIT IV CANAL IRRIGATION
Canal regulations – direct sluice - Canal drop – Cross drainage works-Canal outlets – Design of prismatic canal-canal alignments-Canal lining - Kennedy’s and Lacey’s Regime theory-Design of unlined canal

UNIT V WATER MANAGEMENT IN IRRIGATION
Modernization techniques- Rehabilitation – Optimization of water use-Minimizing water losses- On form development works-Participatory irrigation management- Water resources associations- Changing paradigms in water management-Performance evaluation-Economic aspects of irrigation

TOTAL :45 PERIODS

OUTCOMES:
Students will be able to
- Have knowledge and skills on crop water requirements.
- Understand the methods and management of irrigation.
- Gain knowledge on types of Impounding structures
- Understand methods of irrigation including canal irrigation.
- Get knowledge on water management on optimization of water use.

TEXTBOOKS:

REFERENCES:
CE8604  HIGHWAY ENGINEERING  L T P C  
3 0 0 3

OBJECTIVE:
- To give an overview about the highway engineering with respect to, planning, design, construction and maintenance of highways as per IRC standards, specifications and methods.

UNIT I  HIGHWAY PLANNING AND ALIGNMENT  9
Significance of highway planning – Modal limitations towards sustainability - History of road development in India – factors influencing highway alignment – Soil suitability analysis - Road ecology - Engineering surveys for alignment, objectives, conventional and modern methods - Classification of highways – Locations and functions – Typical cross sections of Urban and Rural roads

UNIT II  GEOMETRIC DESIGN OF HIGHWAYS  9
Cross sectional elements - Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves – Vertical curves - Gradients, Special consideration for hill roads - Hairpin bends – Lateral and vertical clearance at underpasses.

UNIT III  DESIGN OF FLEXIBLE AND RIGID PAVEMENTS  9
Pavement components and their role - Design principles -Design practice for flexible and rigid Pavements (IRC methods only) – Embankments- Problems in Flexible pavement design.

UNIT IV  HIGHWAY CONSTRUCTION MATERIALS AND PRACTICE  9

UNIT V  EVALUATION AND MAINTENANCE OF PAVEMENTS  9

TOTAL: 45 PERIODS

OUTCOMES:
Students will be able to
- Get knowledge on planning and aligning of highway.
- Geometric design of highways
- Design flexible and rigid pavements.
- Gain knowledge on Highway construction materials, properties, testing methods
- Understand the concept of pavement management system, evaluation of distress and maintenance of pavements.
TEXTBOOKS:

REFERENCES:
1. Indian Road Congress (IRC), Guidelines for the Design of Flexible Pavements, (Third Revision), IRC: 37-2012
6. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010

EN8592 WASTEWATER ENGINEERING L T P C 3 0 0 3

OBJECTIVE:
- The objectives of this course is to help students develop the ability to apply basic understanding of physical, chemical, and biological phenomena for successful design, operation and maintenance of sewage treatment plants.

UNIT I PLANNING AND DESIGN OF SEWERAGE SYSTEM 9

UNIT II PRIMARY TREATMENT OF SEWAGE 9
UNIT III SECONDARY TREATMENT OF SEWAGE

UNIT IV DISPOSAL OF SEWAGE

UNIT V SLUDGE TREATMENT AND DISPOSAL

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- An ability to estimate sewage generation and design sewer system including sewage pumping stations
- The required understanding on the characteristics and composition of sewage, self-purification of streams
- An ability to perform basic design of the unit operations and processes that are used in sewage treatment
- Understand the standard methods for disposal of sewage.
- Gain knowledge on sludge treatment and disposal.

TEXTBOOKS:

REFERENCES:
OBJECTIVE:
- To learn the principles and procedures of testing of highway materials

EXERCISES:

I TEST ON AGGREGATES
- Specific Gravity
- Los Angeles Abrasion Test
- Water Absorption of Aggregates

II TEST ON BITUMEN
- Specific Gravity of Bitumen
- Penetration Test
- Viscosity Test
- Softening Point Test
- Ductility Test

III TESTS ON BITUMINOUS MIXES
- Stripping Test
- Determination of Binder Content
- Marshall Stability and Flow Values

IV DEMONSTRATION OF ANY ONE FIELD TESTING EQUIPMENT LIKE SKID RESISTANCE TESTER/ BENKELMAN BEAM ETC

TOTAL: 60 PERIODS

OUTCOME:
- Student knows the techniques to characterize various pavement materials through relevant tests.

REFERENCES:

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Description of Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Concrete cube moulds</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Concrete cylinder moulds</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Concrete Prism moulds</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Sieves</td>
<td>1 set</td>
</tr>
<tr>
<td>5.</td>
<td>Concrete Mixer</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Slump cone</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>Flow table</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>Vibrator</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>Trovels and planers</td>
<td>1 set</td>
</tr>
<tr>
<td>10.</td>
<td>UTM – 400 kN capacity</td>
<td>1</td>
</tr>
<tr>
<td>11.</td>
<td>Vee Bee Consistometer</td>
<td>1</td>
</tr>
<tr>
<td>12.</td>
<td>Aggregate impact testing machine</td>
<td>1</td>
</tr>
<tr>
<td>13.</td>
<td>CBR Apparatus</td>
<td>1</td>
</tr>
<tr>
<td>14.</td>
<td>Blains Apparatus</td>
<td>1</td>
</tr>
<tr>
<td>15.</td>
<td>Los - Angeles abrasion testing machine</td>
<td>1</td>
</tr>
<tr>
<td>16.</td>
<td>Marshall Stability Apparatus</td>
<td>1</td>
</tr>
</tbody>
</table>
OBJECTIVE:
- At the end of the semester, the student shall conceive, design and draw the irrigation and environmental engineering structures in detail showing the plan, elevation and Sections.

PART A: IRRIGATION ENGINEERING
1. TANK COMPONENTS
   Fundamentals of design - Tank surplus weir – Tank sluice with tower head - Drawings showing foundation details, plan and elevation

2. IMPOUNDING STRUCTURES
   Design principles - Earth dam – Profile of Gravity Dam

3. CROSS DRAINAGE WORKS
   General design principles - Aqueducts – Syphon aqueduct (Type III) – Canal drop (Notch Type) – Drawing showing plan, elevation and foundation details.

4. CANAL REGULATION STRUCTURES
   General Principles - Direct Sluice - Canal regulator - Drawing showing detailed plan, elevation and foundation details.

PART B: ENVIRONMENTAL ENGINEERING
1. WATER SUPPLY AND TREATMENT
   Design and Drawing of flash mixer, flocculator, clarifier – Rapid sand filter – Service reservoirs – Pumping station – House service connection for water supply and drainage.

4. SEWAGE TREATMENT & DISPOSAL

TOTAL: 60 PERIODS

OUTCOME:
- The students after completing this course will be able to design and draw various units of Municipal water treatment plants and sewage treatment plants.

TEXTBOOKS:

REFERENCES:

CE8701 ESTIMATION, COSTING AND VALUATION ENGINEERING  L T P C 3 0 0 3

OBJECTIVE:
- The students will acquire knowledge in estimation, tender practices, contract procedures, and valuation and will be able to prepare estimates, call for tenders and execute works.

UNIT I QUANTITY ESTIMATION 9
Philosophy – Purpose – Methods of estimation – Types of estimates – Approximate estimates – Detailed estimate – Estimation of quantities for buildings, bituminous and cement concrete roads, septic tank, soak pit, retaining walls – culverts (additional practice in class room using computer softwares)

UNIT II RATE ANALYSIS AND COSTING 9
Standard Data – Observed Data – Schedule of rates – Market rates – Standard Data for Man Hours and Machineries for common civil works – Rate Analysis for all Building works, canals, and Roads– Cost Estimates (additional practice in class room using Computer softwares) - (Analysis of rates for the item of work asked, the data regarding labour, rates of material and rates of labour to be given in the Examination Question Paper)

UNIT III SPECIFICATIONS, REPORTS AND TENDERS 9

UNIT IV CONTRACTS 9

UNIT V VALUATION 9

TOTAL: 45 PERIODS

OUTCOMES:
The student will be able to
- Estimate the quantities for buildings,
- Rate Analysis for all Building works, canals, and Roads and Cost Estimate.
- Understand types of specifications, principles for report preparation, tender notices types.
- Gain knowledge on types of contracts
- Evaluate valuation for building and land.
TEXTBOOKS:

REFERENCES:
2. Tamil Nadu Transparencies in Tenders Act, 1998
3. Arbitration and Conciliation Act, 1996

CE8702 RAILWAYS, AIRPORTS, DOCKS AND HARBOUR ENGINEERING L T P C
            3 0 0 3

OBJECTIVE:
- To introduce the students about Railways planning, design, construction and maintenance
  and planning design principles of airport and harbour

UNIT I RAILWAY PLANNING AND CONSTRUCTION 10
Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, Selection of
gauges - Track Stress, coning of wheels, creep in rails, defects in rails – Route alignment surveys,
conventional and modern methods--Geometric design of railway, gradient, super elevation,
widening of gauge on curves- Level Crossings.

UNIT II RAILWAY CONSTRUCTION AND MAINTENANCE 8
Earthwork – Stabilization of track on poor soil - Track drainage – Calculation of Materials required
for track laying - Construction and maintenance of tracks – Railway Station and yards and
passenger amenities-Signalling

UNIT III AIRPORT PLANNING 7
Air transport characteristics - airport classification – ICAO - airport planning: Site selection typical
Airport Layouts, Case Studies, parking and Circulation Area

UNIT IV AIRPORT DESIGN 10
Runway Design: Orientation, Wind Rose Diagram, Problems on basic and Actual Length,
Geometric Design – Elements of Taxiway Design – Airport Zones – Passenger Facilities and
Services – Runway and Taxiway Markings.

UNIT V HARBOUR ENGINEERING 10
Definition of Basic Terms: Harbour, Port, Satellite Port, Docks, Waves and Tides – Planning and
Design of Harbours: Harbour Layout and Terminal Facilities – Coastal Structures: Piers, Break
waters, Wharves, Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage – Inland
Water Transport – Wave action on Coastal Structures and Coastal Protection Works – Coastal
Regulation Zone, 2011

TOTAL: 45 PERIODS
OUTCOMES:
Students who successfully complete this course will be able to:

- Understand the methods of route alignment and design elements in Railway Planning and Constructions.
- Understand the Construction techniques and Maintenance of Track laying and Railway stations.
- Gain an insight on the planning and site selection of Airport Planning and design.
- Analyze and design the elements for orientation of runways and passenger facility systems.
- Understand the various features in Harbours and Ports, their construction, coastal protection works and coastal Regulations to be adopted.

TEXTBOOKS:
2. Saxena Subhash, C and Satyapal Arora, A Course in Railway Engineering, Dhanapat Rai and Sons, Delhi, 1998

REFERENCES:

CE8703 STRUCTURAL DESIGN AND DRAWING L T P C
3 0 2 4

OBJECTIVE:
This course aims at providing students with a solid background on the principles of structural engineering design. Students will acquire the knowledge of liquid retaining structures, bridges components, retaining wall and industrial structures.

UNIT I RETAINING WALLS 9+6
Reinforced concrete Cantilever and Counter fort Retaining Walls—Horizontal Backfill with Surcharge—Design of Shear Key-Design and Drawing.

UNIT II FLAT SLAB and BRIDGES 9+6
Design of Flat Slabs with and without drops by Direct Design Method of IS code—Design and Drawing - IRC Specifications and Loading – RC Solid Slab Bridge – Steel Foot-over Bridge-Design and Drawing.

UNIT III LIQUID STORAGE STRUCTURES 9+6
RCC Water Tanks - On ground, Elevated Circular, underground Rectangular Tanks—Hemispherical Bottomed Steel Water Tank—Design and Drawing.

UNIT IV INDUSTRIAL STRUCTURES 9+6
Structural steel Framing - Steel Roof Trusses – Roofing Elements – Beam columns – Codal provisions - Design and Drawing.
UNIT V  
GIRDERS AND CONNECTIONS  

TOTAL: 75 PERIODS

Design and Drawing Exercises for practical component

Part A - RCC Structures

1. Rectangular Column and Footing
2. Combined footing with Two columns
3. RCC one way & Two way Slab and beam system
4. Cantilever Retaining wall
5. RCC T beam bridge deck
6. Underground Rectangular Water Tank
7. Elevated circular water Tank

Part B - Steel Structures

1. Built up column, column base and Foundation
2. Simple Steel Roof Trusses
3. Industrial building Elements
4. Plate Girder (welded)
5. Framed Connections and Detailing
6. Gantry girder
7. Steel water Tank

<table>
<thead>
<tr>
<th>STRUCTURAL DESIGN AND DRAWING</th>
<th>Theory Examination</th>
<th>Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Question paper</td>
<td>Marks to</td>
</tr>
<tr>
<td></td>
<td>Pattern</td>
<td>awarded</td>
</tr>
<tr>
<td>This paper is a theory cum</td>
<td>Five Either/Or</td>
<td>Theoretical</td>
</tr>
<tr>
<td>practical course weightage</td>
<td>type questions</td>
<td>component</td>
</tr>
<tr>
<td>for theory 80% and for</td>
<td>5 x20 = 100 marks</td>
<td>marks will</td>
</tr>
<tr>
<td>practical 20%</td>
<td>covering all the</td>
<td>carry 80%</td>
</tr>
<tr>
<td></td>
<td>five units</td>
<td>weightage.</td>
</tr>
<tr>
<td></td>
<td>Total Duration of</td>
<td>End</td>
</tr>
<tr>
<td></td>
<td>Examination will</td>
<td>Semester</td>
</tr>
<tr>
<td></td>
<td>be 3 hours</td>
<td>Examination will be conducted by COE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Each Question</td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>include Design -</td>
<td>component</td>
</tr>
<tr>
<td></td>
<td>12 Marks</td>
<td>marks will</td>
</tr>
<tr>
<td></td>
<td>Free hand Drawing</td>
<td>carry 80%</td>
</tr>
<tr>
<td></td>
<td>(Not to scale) -</td>
<td>weightage.</td>
</tr>
<tr>
<td></td>
<td>8 marks</td>
<td>End</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Examination will be conducted by the respective institution as internal mode.</td>
</tr>
</tbody>
</table>

OUTCOMES:
At the end of the course the student will be able to
- Design and draw reinforced concrete Cantilever and Counterfort Retaining Walls
- Design and draw flat slab as per code provisions
- Design and draw reinforced concrete and steel bridges
- Design and draw reinforced concrete and steel water tanks
- Design and detail the various steel trusses and gantry girders

77
TEXTBOOKS:

REFERENCES:
2. Shah V L and Veena Gore, Limit State Design of Steel Structures
5. SP 34 Handbook on Concrete Reinforcement and Detailing, Bureau of Indian Standards, New Delhi.
15. IRC 112-2011, Code of Practice for Concrete Road Bridges, The Indian Roads Congress, New Delhi.

CE8711 CREATIVE AND INNOVATIVE PROJECT L T P C
(Activity Based - Subject Related) 0 0 4 2

OBJECTIVE:
• To use the knowledge acquired in Civil Engineering to do a mini project, which allows the students to come up with designs, fabrication or algorithms and programs expressing their ideas in a novel way.

TOTAL: 60 PERIODS
STRATEGY
To identify a topic of interest in consultation with Faculty/Supervisor. Review the literature and gather information pertaining to the chosen topic. State the objectives and develop a methodology to achieve the objectives. Carryout the design / fabrication or develop computer code. Demonstrate the novelty of the project through the results and outputs.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>LTPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE8712</td>
<td>INDUSTRIAL TRAINING</td>
<td>0 0 0 2</td>
</tr>
<tr>
<td></td>
<td>(4 Weeks During VI Semester – Summer)</td>
<td></td>
</tr>
</tbody>
</table>

**OBJECTIVE:**
- To train the students in field work so as to have a firsthand knowledge of practical problems in carrying out engineering tasks. To develop skills in facing and solving the field problems.

**STRATEGY:**
The students individually undertake training in reputed civil engineering companies for the specified duration. At the end of the training, a report on the work done will be prepared and presented. The students will be evaluated through a viva-voce examination by a team of internal staff.

**OUTCOMES:**
At the end of the course the student will be able to understand
- The intricacies of implementation textbook knowledge into practice
- The concepts of developments and implementation of new techniques

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>LTPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE8811</td>
<td>PROJECT WORK</td>
<td>0 0 20 10</td>
</tr>
</tbody>
</table>

**OBJECTIVE:**
- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

**STRATEGY:**
The student works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction. The student will be evaluated based on the report and the viva voce examination by a team of examiners including one external examiner.

**OUTCOME:**
- On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.
OBJECTIVE:

- To introduce the students to the cadastral survey Methods and its applications in generation of Land information system.

UNIT I  INTRODUCTION


UNIT II  CADAstral SURVEY METHODS

Steps in survey of a village - Instruments used for cadastral survey & mapping - Orthogonal, Polar survey methods - Boundary survey - Rectangulation - Calculation of area of Land- GPS and Total Station in Cadastral survey.

UNIT III  PHOTOGRAMMETRIC METHODS

Photogrammetry for cadastral surveying and mapping - Orthophoto map – Quality control measures - Organisation of cadastral offices – international scenario.

UNIT IV  CADAstral MAPPING AND LIS


UNIT V  MAINTENANCE AND MEASUREMENTS


TOTAL: 45 PERIODS

OUTCOMES:

On completion of this course students will be able to

- Gain knowledge about cadastre survey.
- Understand the methods of cadastral survey.
- Get the knowledge about photogrammetric methods.
- Understand Land Record System and computational procedure for modernization of the same.
- The students will be in position to understand the Government procedure in Land Record Management.

TEXTBOOKS:


REFERENCES:

OBJECTIVE:
- To understand the use of Astronomy, Photogrammetry, Total Station and GPS

UNIT I  ASTRONOMICAL SURVEYING 9
Astronomical terms and definition – Motion of sun and stars – Celestial co-ordinate System - Time system - Nautical Alamance – Apparent attitude and corrections – Field observations and determinations of time, longitude, latitude and azimuth by attitude and Hour angle method.

UNIT II  AERIAL SURVEYING 9

UNIT III  TOTAL STATION SURVEYING 9
Classification – basic measuring and working principles of an Electro – optical and Microwave total station- sources of errors in Electro – optical and Microwave total station – Care and Maintenance of total station – trilateration – Applications.

UNIT IV  GPS SURVEYING 9

UNIT V  MISCELLANEOUS 9

TOTAL: 45 PERIODS

OUTCOMES:
On completion of this course, the student shall be able to
- know the astronomical surveying
- do the photogrammetric surveying and interpretation
- solve the field problems with Total station
- know the GPS surveying and the data processing
- understand the route surveys and tunnel alignments

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To introduce the fundamentals and components of Geographic Information System
- To provide details of spatial data structures and input, management and output processes.

UNIT I  FUNDAMENTALS OF GIS 9

UNIT II  SPATIAL DATA MODELS 9

UNIT III  DATA INPUT AND TOPOLOGY 9

UNIT IV  DATA QUALITY AND STANDARDS 9
Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage – Metadata – GIS Standards –Interoperability - OGC - Spatial Data Infrastructure

UNIT V  DATA MANAGEMENT AND OUTPUT 9
Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS- distributed GIS.

TOTAL: 45 PERIODS

OUTCOMES:
This course equips the student to
- Have basic idea about the fundamentals of GIS.
- Understand the types of data models.
- Get knowledge about data input and topology.
- Gain knowledge on data quality and standards.
- Understand data management functions and data output

TEXT BOOKS:

REFERENCE:
OBJECTIVE:

- To solve the Civil Engineering problems with the help of Geoinformatics technique.

UNIT I  LAND RESOURCE MANAGEMENT  6
Total Station and GPS Surveys – Topographic and Bathymetric Surveys – Cadastral Information – Soil and Land Use Surveys - Land Information System (LIS) – Real Estate Information System

UNIT II  STRUCTURAL STUDIES  6
Deformation studies of deflection - Dam deformation - structural movement - Pavement yield - shifting sand-bank and shoreline – Landslide Risk Analysis

UNIT III  SOIL CONSERVATION AND MANAGEMENT  9

UNIT IV  URBAN AND TRANSPORTATION MANAGEMENT  12

UNIT V  WATER RESOURCES PLANNING AND MANAGEMENT  12

OUTCOMES:

On completion of this course students will be able to

- Get knowledge about the land resource management.
- Study structural deformation and movement.
- Model soil characteristics, soil degradation assessment and management.
- Monitor urban growth and management of transport infrastructure.
- Model catchments and management of water resources.

TEXTBOOKS:


REFERENCES:

OBJECTIVE:
- To understand the working of Total Station equipment and solve the surveying problems.

UNIT I FUNDAMENTALS OF TOTAL STATION AND ELECTROMAGNETIC WAVES
Methods of Measuring Distance, Basic Principles of Total Station, Historical Development, Classifications, applications and comparison with conventional surveying. Classification - applications of Electromagnetic waves, Propagation properties, wave propagation at lower and higher frequencies- Refractive index (RI) - factors affecting RI-Computation of group for light and near infrared waves at standard and ambient conditions-Computation of RI for microwaves at ambient condition - Reference refractive index- Real time application of first velocity correction. Measurement of atmospheric parameters- Mean refractive index- Second velocity correction - Total atmospheric correction- Use of temperature - pressure transducers.

UNIT II ELECTRO-OPTICAL AND MICROWAVE SYSTEM

UNIT III SATELLITE SYSTEM
Basic concepts of GPS - Historical perspective and development - applications - Geoid and Ellipsoid- satellite orbital motion - Keplerian motion – Kepler’s Law – Perturbing forces - Geodetic satellite - Doppler effect - Positioning concept -GNSS, IRNSS and GAGAN - Different segments - space, control and user segments - satellite configuration – GPS signal structure - Orbit determination and representation - Anti Spoofing and Selective Availability - Task of control segment - GPS receivers.

UNIT IV GPS DATA PROCESSING
GPS observables - code and carrier phase observation - linear combination and derived observables - concept of parameter estimation – downloading the data RINEX Format – Differential data processing – software modules -solutions of cycle slips, ambiguities, Concepts of rapid, static methods with GPS - semi Kinematic and pure Kinematic methods -satellite geometry & accuracy measures - applications- long baseline processing- use of different softwares available in the market.

UNIT V HYDROGRAPHIC, MINE AND CADAstral SURVEYING

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the student will be able to understand
- Working principles of total station and GPS instruments
- Propagation of EMR through atmosphere and corrections for its effects
- The functioning various types total station and GPS equipments and their applications
- Various techniques available for surveying and mapping with total station and GPS.

TEXTBOOKS:
REFERENCES:

GE8071 DISASTER MANAGEMENT

OBJECTIVES:
- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS
Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)
Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Institutional Processes and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT
Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA
Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.
UNIT V

**DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS**

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

**TOTAL: 45 PERIODS**

**OUTCOMES:**

The students will be able to

- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarios in the Indian context, Disaster damage assessment and management.

**TEXTBOOKS:**


**REFERENCES:**

1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005

---

**GE8074 HUMAN RIGHTS**

**OBJECTIVE:**

- To sensitize the Engineering students to various aspects of Human Rights.

**UNIT I**


**UNIT II**


**UNIT III**

Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

**UNIT IV**

Human Rights in India – Constitutional Provisions / Guarantees.
UNIT V

OUTCOME:
• Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

CE8001 GROUND IMPROVEMENT TECHNIQUES L T P C 3 0 0 3

OBJECTIVE:
• Students will be exposed to various problems associated with soil deposits and methods to evaluate them. The different techniques will be taught to them to improve the characteristics of difficult soils as well as design techniques required to implement various ground improvement methods.

UNIT I PROBLEMATIC SOIL AND IMPROVEMENT TECHNIQUES 8
Role of ground improvement in foundation engineering – Methods of ground improvement – Geotechnical problems in alluvial, lateritic and black cotton soils – Selection of suitable ground improvement techniques based on soil conditions.

UNIT II DEWATERING 10
Dewatering Techniques - Well points – Vacuum and electroosmotic methods – Seepage analysis for two dimensional flow for fully and partially penetrated slots in homogeneous deposits – Design for simple cases.

UNIT III INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS 10

UNIT IV EARTH REINFORCEMENT 9
Concept of reinforcement – Types of reinforcement material – Reinforced earth wall – Mechanism – Simple design - Applications of reinforced earth; Functions of Geotextiles in filtration, drainage, separation, road works and containment applications.

UNIT V GROUTING TECHNIQUES 8

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course the student will be able to
- Gain knowledge on methods and selection of ground improvement techniques.
- Understand dewatering techniques and design for simple cases.
- Get knowledge on in situ treatment of cohesionless and cohesive soils.
- Understand the concept of earth reinforcement and design of reinforced earth.
- Get to know types of grouts and grouting technique.

TEXTBOOKS:

REFERENCES:

CE8002 INTRODUCTION TO SOIL DYNAMICS AND MACHINE FOUNDATIONS L T P C
3 0 0 3

OBJECTIVE:
- To understand the basics of soil dynamics – dynamic behaviour of soils – effects of dynamic loads and the various design methods.

UNIT I THEORY OF VIBRATION

88
UNIT II  WAVE PROPAGATION  9

UNIT III  DYNAMIC PROPERTIES OF SOILS  9

UNIT IV  FOUNDATION FOR DIFFERENT TYPES OF MACHINES  9

UNIT V  INFLUENCE OF VIBRATION AND REMEDIATION  9

OUTCOMES:
At the end of the course the student will be able to
• Understand the theory and measurement of vibration.
• Understand the concept of wave propagation in infinite medium and due to machine foundation.
• Get knowledge on dynamic properties of soils and laboratory and field testing.
• Design of foundation for different types of machines
• Understand liquefaction, motion isolation and vibration control.

TEXT BOOKS:

REFERENCES:

CE8003  ROCK ENGINEERING  L T P C  3 0 0 3

OBJECTIVE:
- To impart knowledge on fundamentals of rock mechanics and its application in solving simple problems associated with rock slopes and underground openings. Student gains the knowledge on the mechanics of rock and its applications in underground structures and rock slope stability analysis.

UNIT I  CLASSIFICATION AND INDEX PROPERTIES OF ROCKS  6

UNIT II  ROCK STRENGTH AND FAILURE CRITERIA  12
Modes of rock failure – Strength of rock – Laboratory measurement of shear, tensile and compressive strength. Stress - strain behaviour of rock under Hydrostatic compression and deviatoric loading – Mohr –Coulomb failure criteria and Hock and Brown empirical criteria

UNIT III  INITIAL STRESSES AND THEIR MEASUREMENTS  10
Estimation of initial stresses in rocks – influence of joints and their orientation in distribution of stresses – measurements of in-situ stresses – Hydraulic fracturing – Flat jack method – Over coring method

UNIT IV  APPLICATION OF ROCK MECHANICS IN ENGINEERING  10

UNIT V  ROCK STABILISATION  7

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the student will be able to
- Classify the rocks, study the index properties of rock systems.
- Understand the modes of rock failure, stesses-strain characteristics, failure criteria.
- Estimate the stresses in rocks.
- Apply rock mechanics in engineering.
- Get knowledge on rock stabilization.

TEXTBOOKS:
REFERENCES:

CE8004 URBAN PLANNING AND DEVELOPMENT

OBJECTIVE:
- To enable students to have the knowledge on planning process and to introduce to the students about the regulations and laws related to Urban Planning.

UNIT I BASIC ISSUES
Definition of Human settlement, Urban area, Town, City, Urbanisation, Suburbanisation, Urban sprawl, Peri-urban areas, Central Business District (CBD), Classification of urban areas – Trend of Urbanisation at International, National, Regional and State level.

UNIT II PLANNING PROCESS

UNIT III DEVELOPMENT PLANS, PLAN FORMULATION AND EVALUATION
Scope and Content of Regional Plan, Master Plan, Detailed Development Plan, Development Control Rules, Transfer of Development Rights, Special Economic Zones- Development of small town and smart cities-case studies

UNIT IV PLANNING AND DESIGN OF URBAN DEVELOPMENT PROJECTS

UNIT V LEGISLATION, DEVELOPMENT AND MANAGEMENT OF URBAN SYSTEM
Town and Country Planning Act, Land Acquisition and Resettlement Act etc., Urban Planning Standards and Regulations, Involvement of Public, Private, NGO, CBO and Beneficiaries.

OUTCOMES:
The students completing the course will have the ability to
- Describe basic issues in urban planning
- Formulate plans for urban and rural development and
- Plan and analyse socio economic aspects of urban and rural planning
- Design of urban development projects.
- Manage urban development projects.

TEXTBOOKS:
3. Singh V.B, Revitalised Urban Administration in India, Kalpaz publication, Delhi, 2001
REFERENCES:
1. Tamil Nadu Town and Country Planning Act 1971, Government of Tamil Nadu, Chennai
4. CMDA, Second Master Plan for Chennai, Chennai 2008

CE8005 AIR POLLUTION AND CONTROL ENGINEERING
L T P C 3 0 0 3

OBJECTIVE:
- To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT I INTRODUCTION
Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards –Ambient and stack sampling and Analysis of Particulate and Gaseous Pollutants.

UNIT II METEOROLOGY

UNIT III CONTROL OF PARTICULATE CONTAMINANTS

UNIT IV CONTROL OF GASEOUS CONTAMINANTS

UNIT V INDOOR AIR QUALITY MANAGEMENT
Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures.

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures.
TEXTBOOKS:

REFERENCES:

GE8075 INTELLECTUAL PROPERTY RIGHTS

OBJECTIVE:
- To give an idea about IPR, registration and its enforcement.

UNIT I INTRODUCTION
Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO –TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

UNIT II REGISTRATION OF IPRs
Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad

UNIT III AGREEMENTS AND LEGISLATIONS

UNIT IV DIGITAL PRODUCTS AND LAW

UNIT V ENFORCEMENT OF IPRs
Infringement of IPRs, Enforcement Measures, Emerging issues – Case Studies.

TOTAL:45 PERIODS

OUTCOME:
- Ability to manage Intellectual Property portfolio to enhance the value of the firm.

TEXTBOOKS:
REFERENCES:

CE8006 PAVEMENT ENGINEERING L T P C 3 0 0 3

OBJECTIVE:
- Student gains knowledge on various IRC guidelines for designing rigid and flexible pavements. Further, the student will be in a position to assess quality and serviceability conditions of roads.

UNIT I  TYPE OF PAVEMENT AND STRESS DISTRIBUTION ON LAYERED SYSTEM 8
Introduction – Pavement as layered structure – Pavement types rigid and flexible. Resilient modulus - Stress and deflections in pavements under repeated loading.

UNIT II  DESIGN OF FLEXIBLE PAVEMENTS 10

UNIT III  DESIGN OF RIGID PAVEMENTS 9
Cement concrete pavements Factors influencing CC pavements – Modified Westergaard approach – Design procedure as per IRC guidelines – Concrete roads and their scope in India.

UNIT IV  PERFORMANCE EVALUATION AND MAINTENANCE 10

UNIT V  STABILIZATION OF PAVEMENTS 8

OUTCOMES:
The students completing the course will
- Get knowledge about types of rigid and flexible pavements.
- Able to design of rigid pavements.
- Able to design of flexible pavements.
- Determine the causes of distress in rigid and flexible pavements.
- Understand stabilisation of pavements, testing and field control.

TEXTBOOKS:
REFERENCES:

CE8007 TRAFFIC ENGINEERING AND MANAGEMENT

OBJECTIVE:
- To give an overview of Traffic engineering, traffic regulation, management and traffic safety with integrated approach in traffic planning as well.

UNIT I TRAFFIC PLANNING AND CHARACTERISTICS
9
- Road Characteristics
- Road user characteristics
- PIEV theory
- Vehicle – Performance characteristics
- Fundamentals of Traffic Flow
- Urban Traffic problems in India
- Integrated planning of town, country, regional and all urban infrastructure – Towards Sustainable approach.
- Land use & transport and modal integration.

UNIT II TRAFFIC SURVEYS
10
- Traffic Surveys
- Speed, journey time and delay surveys
- Vehicles Volume Survey including nonmotorized transports
- Methods and interpretation
- Origin Destination Survey
- Methods and presentation
- Parking Survey
- Accident analyses
- Origin Destination Survey
- Methods, interpretation and presentation
- Statistical applications in traffic studies and traffic forecasting
- Level of service

UNIT III TRAFFIC DESIGN AND VISUAL AIDS
10
- Intersection Design
- Channelization
- Rotary intersection design
- Signal design
- Coordination of signals
- Grade separation
- Traffic signs including VMS and road markings
- Significant roles of traffic control personnel
- Networking pedestrian facilities & cycle tracks.

UNIT IV TRAFFIC SAFETY AND ENVIRONMENT
8
- Road accidents
- Causes, effect, prevention, and cost
- Street lighting
- Traffic and environment hazards
- Air and Noise Pollution
- Causes, abatement measures
- Promotion and integration of public transportation
- Promotion of non-motorized transport.

UNIT V TRAFFIC MANAGEMENT
8
- Area Traffic Management System
- Traffic System Management (TSM) with IRC standards
- Traffic Regulatory Measures
- Travel Demand Management (TDM)
- Direct and indirect methods
- Congestion and parking pricing
- All segregation methods
- Coordination among different agencies
- Intelligent Transport System for traffic management, enforcement and education.

TOTAL: 45 PERIODS

OUTCOMES:
On completing this course, the Students will be able to
- Analyse traffic problems and plan for traffic systems various uses
- Design Channels, Intersections, signals and parking arrangements
- Develop Traffic management Systems
TEXTBOOKS:
2. Indian Roads Congress (IRC) Specifications: Guidelines and Special Publications on Traffic Planning and Management.

REFERENCES:
2. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning,New Delhi, 2010

CE8008 TRANSPORT AND ENVIRONMENT L T P C
3 0 0 3

OBJECTIVE:
- The objective of this course is to create an awareness / overview of the impact of Transportation Projects on the environment and society..

UNIT I INTRODUCTION 8
Environmental Inventory, Environmental Assessment, Environmental Impact Assessment (EIA), Environmental Impact of Transportation Projects, Need for EIA, EIA Guidelines for Transportation Project, Historical Development.

UNIT II METHODOLOGIES 8
Elements of EIA – Screening and Scoping – Methods of Impact Analysis – Applications – Appropriate methodology.

UNIT III ENVIRONMENTAL IMPACT, PREDICTION AND ASSESSMENT 10
Prediction and Assessment of Impact of Transportation Project at various stages on water, air, noise, land acquisition and resettlement, Socio economic impact, indigenous people, aesthetics, health and safety, energy studies, IRC guidelines.

UNIT IV ENVIRONMENTAL MITIGATION AND MANAGEMENT PLAN 10

UNIT V EIA CASE STUDIES 9
EIA Case Studies on Highway, Railway, Airways and Waterways Projects

TOTAL: 45 PERIODS
OUTCOMES:
Students will be able to
- Understand the impact of Transportation projects on the environment.
- Get knowledge on methods of impact analysis and their applications.
- Understand environmental Laws on Transportation Projects and the mitigative measures adopted in the planning stage.
- Predict and assess the impact of transportation projects.

TEXTBOOKS:

REFERENCES:

CE8009
INDUSTRIAL STRUCTURES

OBJECTIVE:
- To learn the planning, layout, functional aspects of industries and design of major steel and R.C structures needed for industries.

UNIT I PLANNING
Classification of industries and industrial structures – Site Planning and Selection – Exterior and interior Layout for Industries and buildings - Guidelines from factories act

UNIT II FUNCTIONAL REQUIREMENTS
Lighting – Ventilation – Noise and Vibration control – Fire safety

UNIT III DESIGN OF STEEL STRUCTURES

UNIT IV DESIGN OF R.C. STRUCTURES
Corbels, Brackets and Nibs - Silos and bunkers –Chimney –Cooling Towers (Principles only)

UNIT V PREFABRICATION
Principles of prefabrication and pre cast construction – Prestressed precast roof trusses - Floor slabs - Wall panels- Handling and erection stresses –joints in precast structures.

TOTAL: 45 PERIODS
OUTCOMES:
Upon completion of this course, students will be able to
- Know the requirements of various industries and get an idea about the materials used and planning of various industrial components
- Understand the functional requirements for industrial structures.
- Design special steel structures like bunkers, silos, crane girders, chimneys and pre-engineered buildings.
- Design special RC structures like corbels, silos, bunkers, chimneys, plates and shells.
- Understand the principles of prefabrication and prestressing

TEXTBOOKS:

REFERENCES:

CE8010 ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT L T P C
3 0 0 3

OBJECTIVE:
- To impart the knowledge and skills to identify, assess and mitigate the environmental and social impacts of developmental projects

UNIT I INTRODUCTION 9
Impacts of Development on Environment – Rio Principles of Sustainable Development

UNIT II ENVIRONMENTAL ASSESSMENT 9
Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise and energy, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction – Analysis of alternatives

UNIT III ENVIRONMENTAL MANAGEMENT PLAN 9
UNIT IV SOCIO ECONOMIC ASSESSMENT

Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis-

UNIT V CASE STUDIES


OUTCOMES:
The students completing the course will have ability to

- carry out scoping and screening of developmental projects for environmental and social assessments
- explain different methodologies for environmental impact prediction and assessment
- plan environmental impact assessments and environmental management plans
- evaluate environmental impact assessment reports

TEXTBOOKS:

REFERENCES:

CE8011 DESIGN OF PRESTRESSED CONCRETE STRUCTURES

OBJECTIVES:

- To introduce the need for prestressing in a structure
- To explain the methods, types and advantages of prestressing to the students.
- To make the students to design a prestressed concrete structural elements and systems
- To introduce the students the effect of prestressing in the flexural and shear behaviour of structural elements.

UNIT I INTRODUCTION – THEORY AND BEHAVIOUR

UNIT II DESIGN FOR FLEXURE AND SHEAR
Basic assumptions of flexural design – Permissible stresses in steel and concrete as per I.S.1343 Code – Different Types of sections - Design of sections of Type I and Type II post-tensioned and pre tensioned beams – Check for flexural capacity based on I.S. 1343 Code – Influence of Layout of cables in post-tensioned beams – Location of wires in pre-tensioned beams – Design for shear based on I.S. 1343 Code.

UNIT III DEFLECTION AND DESIGN OF ANCHORAGE ZONE
Factors influencing deflections – Short term deflections of uncracked members – Prediction of long term deflections due to creep and shrinkage – Check for serviceability limit states. Determination of anchorage zone stresses in post-tensioned beams – design of anchorage zone reinforcement – Check for transfer bond length in pre-tensioned beams.

UNIT IV COMPOSITE BEAMS AND CONTINUOUS BEAMS
Analysis and design of composite beams – Methods of achieving continuity in continuous beams – Analysis for secondary moments – Concordant cable and linear transformation – Calculation of stresses – Principles of design.

UNIT V TENSION AND COMPRESSION MEMBERS
Role of prestressing in members subjected to Tensilr forces and compressive forces - Design of tension and compression members – Tanks, pipes and poles – Partial prestressing – Definition, methods of achieving partial prestressing, merits and demerits of partial prestressing.

OUTCOMES:
On successful completion of this course, students will be able to:
• Understand the behaviour of prestressed concrete members and able to analyze the prestressed concrete beams.
• Design the prestressed concrete members for flexure and shear as per the relevant design code (IS 1343).
• Analyze for deflection of prestressed concrete members and design the anchorage zone.
• Analyze and design of composite beams and continuous beams.
• Design of prestressed concrete structures - sleepers, Tanks, pipes and poles.

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCES:
OBJECTIVE:
- To make the students to learn about planning of construction projects, scheduling procedures and techniques, cost and quality control projects and use of project information as decision making tool.

UNIT I  CONSTRUCTION PLANNING  6

UNIT II  SCHEDULING PROCEDURES AND TECHNIQUES  12
Relevance of construction schedules-Bar charts - The critical path method-Calculations for critical path scheduling-Activity float and schedules-Presenting project schedules-Critical path scheduling for Activity-on-node and with leads, Lags and Windows-Calculations for scheduling with leads,lags and windows-Resource oriented scheduling-Scheduling with resource constraints and precedences -Use of Advanced Scheduling Techniques-Scheduling with uncertain durations-Crashing and time/cost tradeoffs -Improving the Scheduling process – Introduction to application software.

UNIT III  COST CONTROL MONITORING AND ACCOUNTING  9
The cost control problem-The project budget-Forecasting for Activity cost control - financial accounting systems and cost accounts-Control of project cash flows-Schedule control-Schedule and Budget updates-Relating cost and schedule information.

UNIT IV  QUALITY CONTROL AND SAFETY DURING CONSTRUCTION  9

UNIT V  ORGANIZATION AND USE OF PROJECT INFORMATION  9
Types of project information-Accuracy and Use of Information-Computerized organization and use of Information - Organizing information in databases-relational model of Data bases-Other conceptual Models of Databases-Centralized database Management systems-Databases and application programs-Information transfer and Flow.

OUTCOMES:
The students completing the course will have ability to
- Understand basic concepts of construction planing.
- Schedule the construction activities.
- Forecast and control the cost in a construction.
- Understand the quality control and safety during construction.
- Organize information in Centralized database Management systems.

TEXTBOOKS:
REFERENCES:

EN8591 MUNICIPAL SOLID WASTE MANAGEMENT L T P C 3 0 0 3

OBJECTIVE:
• To make the students conversant with the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

UNIT I SOURCES AND CHARACTERISTICS 9

UNIT II SOURCE REDUCTION, WASTE STORAGE AND RECYCLING 8

UNIT III COLLECTION AND TRANSFER OF WASTES 8
Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of waste collection systems; Transfer stations –location, operation and maintenance; options under Indian conditions – Field problems- solving.

UNIT IV PROCESSING OF WASTES 12
Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and biomethanation; Thermal processing options – case studies under Indian conditions.

UNIT V WASTE DISPOSAL 8

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will demonstrate
• understanding of the nature and characteristics of municipal solid wastes and the regulatory requirements regarding municipal solid waste management.
• Reduction, reuse and recycling of waste.
• ability to plan and design systems for storage, collection, transport, processing and disposal of municipal solid waste.
• knowledge on the issues on solid waste management from an integrated and holistic perspective, as well as in the local and international context.
• Design and operation of sanitary landfill.

TEXTBOOKS:

REFERENCES:

GE8077 TOTAL QUALITY MANAGEMENT

OBJECTIVE:
• To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

UNIT II TQM PRINCIPLES
Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I
The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II
Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY MANAGEMENT SYSTEM

TOTAL: 45 PERIODS
OUTCOME:
- The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXTBOOK:

REFERENCES:
4. ISO9001-2015 standards

CE8013 COASTAL ENGINEERING  L T P C
3 0 0 3

OBJECTIVES:
- The main purpose of coastal engineering is to protect harbors and improve navigation.
- The students to the diverse topics as wave mechanics, wave climate, shoreline protection methods and laboratory investigations using model studies.

UNIT I INTRODUCTION TO COASTAL ENGINEERING 9
Indian Scenario - Classification of Harbours. Introduction - wind and waves - Sea and Swell - Introduction to small amplitude wave theory - use of wave tables - Mechanics of water waves - Linear (Airy) wave theory, Introduction to Tsunami

UNIT II WAVE PROPERTIES AND ANALYSIS 9
Behaviour of waves in shallow waters, Introduction to non-linear waves and their properties - Waves in shallow waters - Wave Refraction, Diffraction and Shoaling - Hindcast wave generation models, wave shoaling; wave refraction; wave breaking; wave diffraction random and 3D waves - Short term wave analysis - wave spectra and its utilities - Long term wave analysis - Statistics analysis of grouped wave data.

UNIT III COASTAL SEDIMENT TRANSPORT 9
Dynamic beach profile; cross-shore transport; along shore transport (Littoral transport), sediment movement

UNIT IV COASTAL DEFENSE 9
Field measurement; models, groins, sea walls, offshore breakwaters, artificial nourishment - planning of coast protection works - Design of shore defense structures

UNIT V MODELING IN COASTAL ENGINEERING 9
Physical modeling in Coastal Engineering - Limitations and advantages - Role of physical modeling in coastal engineering - Numerical modeling - Modeling aspects - limitations - Tsunami mitigation measures –

TOTAL: 45 PERIODS
OUTCOMES:
The students will be able to
- Understand coastal engineering aspects of harbors methods to improve navigation
- Understand the wave properties and analysis of wave.
- Understand the concepts of sediment transport.
- Design of shore defense structures.
- Gain knowledge in modeling in coastal engineering.

REFERENCES:

CE8014 PARTICIPATORY WATER RESOURCES MANAGEMENT

OBJECTIVE:
- To gain an insight on local and global perceptions and approaches on participatory water resource management

UNIT I FUNDAMENTALS: SOCIOLOGY AND PARTICIPATORY APPROACH
Sociology – Basic concepts – Perspectives- Social Stratification – Irrigation as a Socio technical Process - Participatory concepts– Objectives of participatory approach

UNIT II UNDERSTANDING FARMERS PARTICIPATION

UNIT III ISSUES IN WATER MANAGEMENT
Multiple use of water – Issues in Inter-sectoral Water Allocation - domestic, irrigation, industrial sectors - modernization techniques – Rehabilitation – Command Area Development - Water delivery systems

UNIT IV PARTICIPATORY WATER CONSERVATION

UNIT V PARTICIPATORY WATERSHED DEVELOPMENT

TOTAL: 45 PERIODS
OUTCOMES:
The students will be able to
- Gain knowledge on various processes involved in participatory water resource management.
- Understand farmers participation in water resources management.
- Aware of the issues related to water conservation and watershed Development
- Get knowledge in participatory water conservation
- Understand concept, principle, approach of watershed management.

TEXTBOOKS:

REFERENCE:

CE8015 INTEGRATED WATER RESOURCES MANAGEMENT

OBJECTIVES:
- To introduce the students to the interdisciplinary analysis of water and conceptual design of intervention strategies.
- To develop a knowledge-base on capacity building on IWRM.

UNIT I IWRM FRAMEWORK
Definition – Objectives – Principles – Evolution of IWRM - IWRM relevance in water resources management – Paradigm shift: Processes and prospective outcomes

UNIT II CONTEXTUALIZING IWRM
UN formulations - SDG goals - IWRM in Global, Regional and Local water partnership – Institutional transformation - Bureaucratic reforms - Inclusive development

UNIT III EMERGING ISSUES IN WATER MANAGEMENT
Emerging Issues – Drinking water management in the context of climate change - IWRM and irrigation - Flood – Drought – Pollution – Linkages between water, health and poverty

UNIT IV IWRM AND WATER RESOURCES DEVELOPMENT IN INDIA
Rural Development - Ecological sustainability - Watershed development and conservation - Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security

UNIT V ASPECTS OF INTEGRATED DEVELOPMENT
Capacity building - Conceptual framework of IWRM – Problems and policy issues - Solutions for effective integrated water management - Case studies

TOTAL: 45 PERIODS
OUTCOMES:
The students will be able to

- Understand objectives, principles and evolution of integrated water resources management.
- Have an idea of contextualizing IWRM
- Gain knowledge in emerging issues in water management, flood, drought, pollution and poverty.
- Understand the water resources development in India and wastewater reuse.
- Gain knowledge on integrated development of water management.

TEXTBOOKS:

REFERENCES:

CE8016 GROUNDWATER ENGINEERING LTPC 3 0 0 3

OBJECTIVES:
- To introduce the student to the principles of Groundwater governing Equations and Characteristics of different aquifers,
- To understand the techniques of development and management of groundwater.

UNIT I HYDROGEOLOGICAL PARAMETERS

UNIT II WELL HYDRAULICS

UNIT III GROUNDWATER MANAGEMENT

UNIT IV GROUNDWATER QUALITY
Ground water chemistry - Origin, movement and quality - Water quality standards – Drinking water – Industrial water – Irrigation water - Ground water Pollution and legislation - Environmental Regulatory requirements
UNIT V GROUNDWATER CONSERVATION

Artificial recharge techniques – Reclaimed wastewater recharge – Soil aquifer treatment (SAT) – Aquifer Storage and Recovery (ASR) Seawater Intrusion and Remediation – Groundwater Basin management and Conjunctive use – Protection zone delineation, Contamination source inventory and remediation schemes

TOTAL: 45 PERIODS

OUTCOMES:
The students will be able to

- Understand aquifer properties and its dynamics
- Get an exposure towards well design and practical problems
- Develop a model for groundwater management.
- Students will be able to understand the importance of artificial recharge and groundwater quality concepts
- Gain knowledge on conservation of groundwater.

TEXTBOOKS:

REFERENCES:
UNIT V ADVANCED OPTIMIZATION TECHNIQUES

Integer and parametric linear programming – Goal programming types – Applications to reservoir release optimization – application of evolutionary algorithms like Genetic algorithm, Particle swarm, Simulated Annealing to reservoir release optimization

TOTAL: 45 PERIODS

OUTCOMES:
The students will be
- Exposed to the economic aspects and analysis of water resources systems by which they will get an idea of comprehensive and integrated planning of a water resources project.
- Understanding the concept of linear programming and apply in water resource system.
- Understanding the concept of dynamic programming and apply in water resource system.
- Develops simulation models.
- Developing skills in solving problems in operations research through LP, DP and Simulation techniques.

TEXTBOOK:

REFERENCES:

CE8018 GEO-ENVIRONMENTAL ENGINEERING L T P C 3 0 0 3

OBJECTIVE:
The student acquires the knowledge on the Geotechnical engineering problems associated with soil contamination, safe disposal of waste and remediate the contaminated soils by different techniques thereby protecting environment.

UNIT I GENERATION OF WASTES AND CONSEQUENCES OF SOIL POLLUTION 8
Introduction to Geo environmental engineering – Environmental cycle – Sources, production and classification of waste – Causes of soil pollution – Factors governing soil pollution interaction clay minerals - Failures of foundation due to waste movement.

UNIT II SITE SELECTION AND SAFE DISPOSAL OF WASTE 10

UNIT III TRANSPORT OF CONTAMINANTS 8
UNIT IV WASTE STABILIZATION

UNIT V REMEDIATION OF CONTAMINATED SOILS
Exsitu and Insitu remediation-Solidification, bio-remediation, incineration, soil washing, phyto remediation, soil heating, vetrification, bio-venting.

TOTAL: 45 PERIODS

OUTCOMES:
The students will be able to
- Assess the contamination in the soil
- Understand the current practice of waste disposal
- To prepare the suitable disposal system for particular waste.
- Stabilize the waste and utilization of solid waste for soil improvement.
- Select suitable remediation methods based on contamination.

TEXTBOOKS:

REFERENCES:

CE8091 HYDROLOGY AND WATER RESOURCES ENGINEERING

OBJECTIVE:
- To introduce the student to the concept of hydrological aspects of water availability and requirements and should be able to quantify, control and regulate the water resources.

UNIT I PRECIPITATION AND ABSTRACTIONS
UNIT II  RUNOFF  8
Watershed, catchment and basin - Catchment characteristics - factors affecting runoff - Run off estimation using empirical - Strange"s table and SCS methods – Stage discharge relationships - flow measurements- Hydrograph – Unit Hydrograph – IUH

UNIT III  FLOOD AND DUGHT  9
Natural Disasters-Flood Estimation- Frequency analysis- Flood control- Definitions of droughts- Meteorological, hydrological and agricultural droughts- IMD method-NDVI analysis- Drought Prone Area Programme (DPAP)

UNIT IV  RESERVOIRS  8
Classification of reservoirs, General principles of design, site selection, spillways, elevation – area - capacity - storage estimation, sedimentation - life of reservoirs – rule curve

UNIT V  GROUNDWATER AND MANAGEMENT  10
Origin- Classification and types - properties of aquifers- governing equations – steady and unsteady flow - artificial recharge - RWH in rural and urban areas

TOTAL: 45 PERIODS

OUTCOMES:
The students completing the course will have
- an understanding of the key drivers on water resources, hydrological processes and their integrated behaviour in catchments,
- ability to construct and apply a range of hydrological models to surface water and groundwater problems including Hydrograph, Flood/Drought management, artificial recharge
- ability to conduct Spatial analysis of rainfall data and design water storage reservoirs
- Understand the concept and methods of ground water management.

TEXTBOOKS:

REFERENCES:

GE8076  PROFESSIONAL ETHICS IN ENGINEERING  LT P C
3 0 0 3

OBJECTIVE:
- To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I  HUMAN VALUES  10
UNIT II ENGINEERING ETHICS

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOME:
- Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

REFERENCES:

Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org
OBJECTIVES:

- To introduce the students about computer graphics, structural analysis, design and optimization and expert systems, applications in analysis.

UNIT I INTRODUCTION
Fundamental reason for implementing CAD - Software requirements – Hardware components in CAD system – Design process - Applications and benefits.

UNIT II COMPUTER GRAPHICS
Graphic Software – Graphic primitives - Transformations - 2 Dimensional and 3 Dimensional transformations – Concatenation - Wire frame modeling - Solid modeling - Graphic standards - Drafting packages.

UNIT III STRUCTURAL ANALYSIS

UNIT IV DESIGN AND OPTIMIZATION
Principles of design of steel and RC structures - Beams and Columns - Applications to simple design problems - Optimization techniques - Algorithms - Linear programming – Simplex Method

UNIT V EXPERT SYSTEMS
Introduction to artificial intelligence - Knowledge based expert systems – Applications of Knowledge Based Expert Systems - Rules and decision tables - Inference mechanisms - simple applications

OUTCOMES:
On successful completion of this course, students will be able to:

- Understand the concepts of Computer-Aided Design, Software requirements and Hardware components in CAD system.
- Acquire the knowledge in Computer Graphics and Computer aided drafting using Auto CAD software.
- Understand the fundamentals of finite element analysis and be able use software for modeling, analysis and design of structures.
- Understand the concepts of Optimization techniques and its practical applications to structural engineering.
- Acquire the knowledge in Artificial Intelligence and Knowledge based expert systems.

TOTAL: 45 PERIODS

TEXTBOOKS:

REFERENCES:
OBJECTIVE:
- To acquire the knowledge on Quality of concrete, durability aspects, causes of deterioration, assessment of distressed structures, repairing of structures and demolition procedures.

UNIT I  IMAINTENANCE AND REPAIR STRATEGIES
Maintenance, Repair and Rehabilitation, Facets of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating damaged structure, causes of deterioration.

UNIT II  STRENGTH AND DURABILITY OF CONCRETE
Quality assurance for concrete—Strength, Durability- Cracks, different types, causes—Effects due to climate, temperature, Sustained elevated temperature, Corrosion

UNIT III  SPECIAL CONCRETES

UNIT IV  TECHNIQUES FOR REPAIR AND PROTECTION METHODS
Non-destructive Testing Techniques, Load Test for Stability-Epoxy injection, Shoring, Underpinning, Corrosion protection techniques—Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, cathodic protection.

UNIT V  REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES
Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, leakage, earthquake-Transportation of Structures from one place to other—Structural Health Monitoring- demolition techniques-Engineered demolition methods-Case studies

TOTAL: 45 PERIODS

OUTCOMES:
Students will be able to understand
- the importance of maintenance and assessment method of distressed structures.
- the strength and durability properties ,their effects due to climate and temperature.
- recent development in concrete
- the techniques for repair rand protection methods
- repair, rehabilitation and retrofitting of structures and demolition methods.

TEXT BOOKS:

REFERENCES:
4. Hand Book on “Repair and Rehabilitation of RCC Buildings” – Director General works CPWD, Govt of India, New Delhi–2002

CE8021 STRUCTURAL DYNAMICS AND EARTHQUAKE ENGINEERING

OBJECTIVE:
- To understand the behaviour of dynamic loading. Study the effect of earthquake loading on the behaviour of structures. Understand the codal provisions to design the structures as earthquake resistant.

UNIT I SINGLE DEGREE OF FREEDOM SYSTEM


UNIT II MULTI DEGREE OF FREEDOM SYSTEM


UNIT III INTRODUCTION TO EARTHQUAKE ENGINEERING


UNIT IV EARTHQUAKE EFFECTS ON STRUCTURES


UNIT V CONCEPTS OF EARTHQUAKE RESISTANT DESIGN


TOTAL: 45 PERIODS

OUTCOMES:
- Student will develop knowledge in the simulation and mathematical model development.
- Students will be trained to identify, formulate and solve complicated problem.
- Students will be able to understand the role of natural calamity in the damage of structures.
- Students will be able to develop the skill to analyse data and to apply the same in the practical problems.
- Students will be able to apply the developed methodologies for the safe and stable design of structures.
CE8022            PREFABRICATED STRUCTURES            L T P C
                                      3 0 0 3

OBJECTIVE:
• To impart knowledge to students on modular construction, industrialised construction and design of prefabricated elements and construction methods.

UNIT I    INTRODUCTION

UNIT II    PREFABRICATED COMPONENTS
Behaviour and types of structural components – Large panel systems – roof and floor slabs – Walls panels - Beams - Columns - Shear walls

UNIT III    DESIGN PRINCIPLES
Design philosophy- Design of cross section based on efficiency of material used – Problems in design because of joint flexibility – Allowance for joint deformation - Demountable precast concrete systems.

UNIT IV    JOINTS AND CONNECTIONS IN STRUCTURAL MEMBERS
Types of Joints – based on action of forces - compression joints - shear joints - tension joints - based on function - construction, contraction, expansion. Design of expansion joints - Dimensions and detailing - Types of sealants - Types of structural connections - Beam to Column - Column to Column - Beam to Beam - Column to foundation.

UNIT V    DESIGN FOR ABNORMAL LOADS
Progressive collapse – Codal provisions – Equivalent design loads for considering abnormal effects such as earthquakes, cyclones, etc., - Importance of avoidance of progressive collapse.

TOTAL: 45 PERIODS
OUTCOMES:
- The student will have good knowledge about design principles, layout of factory and stages of loading in precast construction.
- Acquire knowledge about panel systems, slabs, connections used in precast construction and they will be in a position to design the elements.
- Acquire knowledge about types of floor systems, stairs and roofs used in precast construction.
- Acquire knowledge about types of walls used in precast construction, sealants, design of joints.
- Acquire knowledge about components in industrial building.

TEXTBOOKS:

REFERENCES:
2. "Handbook on Precast Concrete Buildings", Indian Concrete Institute, 2016.

CE8023 BRIDGE ENGINEERING

OBJECTIVE:
- To make the student to know about various bridge structures, selection of appropriate bridge structures and its design for given site conditions.

UNIT I INTRODUCTION
History of bridges - Components of a bridge - Classification of road bridges - Selection of site and initial decision process - Survey and alignment; Geotechnical investigations and interpretations. River Bridge: Selection of Bridge site and planning - Collection of bridge design data - Hydrological calculation

Road Bridges - IRC codes - Standard Loading for Bridge Design - Influence lines for statically determinate and indeterminate structures - Transverse distribution of Live loads among deck longitudinal - Load combinations for different working state and limit state designs

Railway Bridges: Loadings for Railway Bridges; Railroad data. Pre-design considerations - Railroad vs. Highway bridges.

UNIT II SUPERSTRUCTURES
Bridge decks – Structural forms and behaviour – Choices of superstructure types – Behaviour and modeling of bridge decks – Simple beam model – Plate model – Grillage method – Finite Element method - Different types of superstructure (RCC and PSC); Longitudinal Analysis of Bridge.- Transverse Analysis of Bridge - Temperature Analysis - Distortional Analysis - Effects of Differential settlement of supports - Reinforced earth structures
UNIT III  DESIGN OF STEEL BRIDGES  9
Design of Truss Bridges – Design of Plate girder bridges.

UNIT IV  DESIGN OF RC AND PSC BRIDGES  9
Design of slab bridges – T beam bridges – PSC bridges

UNIT V  SUBSTRUCTURE, BEARINGS AND EXPANSION JOINTS, PARAPETS AND RAILINGS  9
Substructure - Pier; Abutment - Wing walls- Importance of Soil-Structure Interaction - Types of foundations - Open foundation- Pile foundation- Well foundation- Simply supported bridge- Continuous Bridge - Bearings and Expansion Joints - Different types of bridge bearings and expansion joints - Parapets and Railings for Highway Bridges

TOTAL: 45 PERIODS

OUTCOMES:
On successful completion of this course, students will be able to:
- Identify loads on bridges and selection of type of bridge for the site condition
- Analyze the super structure by various methods.
- Design the trussed bridge and plate girder bridges
- Design reinforced concrete slab and T beam bridges and prestressed concrete bridges
- Decide the appropriate sub structural systems, bearings and expansion joints for the bridges.

TEXTBOOKS:

REFERENCES:

GE8073  FUNDAMENTALS OF NANOSCIENCE  L T P C
3  0  0  3

OBJECTIVE:
- To learn about basis of nanomaterial science, preparation method, types and application

UNIT I  INTRODUCTION  8
Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II  GENERAL METHODS OF PREPARATION  9
Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.
UNIT III  NANOMATERIALS

UNIT IV  CHARACTERIZATION TECHNIQUES

UNIT V  APPLICATIONS

TOTAL : 45 PERIODS

OUTCOMES:
- Will familiarize about the science of nanomaterials
- Will demonstrate the preparation of nanomaterials
- Will develop knowledge in characteristic nanomaterial

TEXT BOOKS :

REFERENCES: